Advertisement

Annals of Biomedical Engineering

, Volume 24, Issue 2, pp 250–268 | Cite as

The identification of nonlinear biological systems: Volterra kernel approaches

  • Michael J. Korenberg
  • Ian W. Hunter
Article

Abstract

Representation, identification, and modeling are investigated for nonlinear biomedical systems. We begin by considering the conditions under which a nonlinear system can be represented or accurately approximated by a Volterra series (or functional expansion). Next, we examine system identification through estimating the kernels in a Volterra functional expansion approximation for the system. A recent kernel estimation technique that has proved to be effective in a number of biomedical applications is investigated as to running time and demonstrated on both clean and noisy data records, then it is used to illustrate identification of cascades of alternating dynamic linear and static nonlinear systems, both single-input single-output and multivariable cascades. During the presentation, we critically examine some interesting biological applications of kernel estimation techniques

Keywords

System identification Volterra kernel Functional expansions Nonlinear systems Volterra series Cascade Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alper, P., and D. Poortvliet. On the use of Volterra series representation and higher order impulse responses for nonlinear systems.Elec. Lab. Rep. Tech. Univ., Delft, Netherlands, 1963.Google Scholar
  2. 2.
    Andronikou, A. M., G. A. Bekey, and S. F. Masri. Identification of nonlinear hysteretic systems using random search.IFAC Ident. Sys. Param. Est. 1:263–268, 1982.Google Scholar
  3. 3.
    Barrett, J. F. The use of functionals in the analysis of nonlinear physical systems.J. Elect. Control 15:567–615. 1963.Google Scholar
  4. 4.
    Barrett, J. F. The use of Volterra series to find region of stability of a nonlinear differential equation.Int. J. Control 1:209–216, 1965.CrossRefGoogle Scholar
  5. 5.
    Barrett, J. F. Functional series representation of nonlinear systems—some theoretical comments.6th IFAC Symp. Ident. Sys. Param. Est. 1:251–256, 1982.Google Scholar
  6. 6.
    Billings, S. A., and W. S. F. Voon. Correlation based model validity tests for nonlinear models.Int. J. Control. 44:235–244, 1986.CrossRefGoogle Scholar
  7. 7.
    Bose, A. G. A theory of nonlinear systems.MIT Res. Lab. Elec. Tech. Rep. 309, 1956.Google Scholar
  8. 8.
    Boyd, S., and L. O. Chua. Fading memory and the problem of approximating non-linear operators with Volterra series.IEEE Trans. Circ. Sys. 32:1150–1160, 1985.CrossRefGoogle Scholar
  9. 9.
    Boyd, S., Y. S. Tang, and L. O. Chua. Measuring Volterra kernels.IEEE Trans. Circ. Sys. 30:571–577, 1983.CrossRefGoogle Scholar
  10. 10.
    Brilliant, M. B. Theory of the analysis of nonlinear systems.MIT Res. Lab. Elec. Tech. Rep. 345, 1958.Google Scholar
  11. 11.
    Bussgang, J. J. Crosscorrelation functions of amplitude distorted Guassian signals.MIT Res. Lab. Elec. Tech. Rep. 216:1–14, 1952.Google Scholar
  12. 12.
    Chen, H. W., L. D. Jacobson, and J. P. Gaske. Structural classification of multi-input nonlinear systems.Biol. Cyber. 63:341–357, 1990.CrossRefGoogle Scholar
  13. 13.
    Chon, K. H., N. H. Holstein-Rathlou, D. J. Marsh, and V. Z. Marmarelis. Parametric and nonparametric nonlinear modeling of renal autoregulation dynamics. In:Advanced Methods of Physiological System Modeling, vol. 3, edited by V. Z. Marmarelis, New York: Plenum Press, 1994, pp. 195–210.Google Scholar
  14. 14.
    Clynes, M. The non-linear biological dynamics of unidirectional rate sensitivity illustrated by analog computer analysis, pupillary reflex to light and sound, and heart rate behavior.Ann. NY Acad. Sci. X:98, 1962.Google Scholar
  15. 15.
    Ewen, E. J., and D. D. Weiner, Identification of weakly nonlinear systems using input and output measurements.IEEE Trans. Circ. Sys. 27:1255–1261, 1980.CrossRefGoogle Scholar
  16. 16.
    Flake, P. Volterra series representation of nonlinear systems,AIEE Trans. 64:330–335, 1963.Google Scholar
  17. 17.
    Frechet, M. Sur les fonctionnelles continues.Annales Scientifiques de l'Ecole Normal Superieure 27:193–219, 1910.Google Scholar
  18. 18.
    Gardner, W. A., and T. L. Archer. Exploitation of cyclostationarity for identifying the Volterra kernels of nonlinear systems.IEEE Trans. Inform. Theory 39:535–542, 1993.CrossRefGoogle Scholar
  19. 19.
    George, D. Continuous nonlinear systems.MIT Res. Lab. Elec. Tech. Rep. 335:246–281, 1959.Google Scholar
  20. 20.
    Goussard, Y., W. C. Krenz, and L. W. Stark. An improvement of the Lee and Schetzen cross-correlation method.IEEE Trans. Automat. Control 30:895–898, 1985.CrossRefGoogle Scholar
  21. 21.
    Goussard, Y., W. C. Krenz, L. W. Stark, and G. Demoment. Practical identification of functional expansions of nonlinear systems submitted to non-Gaussian inputs.Ann. Biomed. Eng. 19:401–427.Google Scholar
  22. 22.
    Hung, G., and L. Stark. The kernel identification methods: review of theory, calculation, application, and interpretation.Math. Biosci. 37:135–170, 1977.CrossRefGoogle Scholar
  23. 23.
    Hung, G. K., and L. W. Stark. The interpretation of kernels: an overview.Ann. Biomed. Eng. 19:509–519, 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Hunter, I. W., and R. E. Kearney. Generation of random sequences with jointly specified probability density and autocorrelation functions.Biol. Cybern. 47:141–146, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Hunter, I. W., and R. E. Kearney. Two-sided linear filter identification,Med. & Biol. Eng. & Comput. 21:203–209, 1983.CrossRefGoogle Scholar
  26. 26.
    Hunter, I. W., and M. J. Korenberg. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models.Biol. Cybern, 55:135–144, 1986.PubMedGoogle Scholar
  27. 27.
    Klein, S. Interpreting nonlinear systems: the third order kernel of the eye movement control system. In:10th Annual Pittsburgh Conference on Modeling and Simulation, edited by Vogt and Mickle. Pittsburgh, PA: University of Pittsburgh, 215–222, 1979.Google Scholar
  28. 28.
    Klein, S. A. Relationships between kernels measured with different stimuli. In:Advanced Methods of Physiological System Modeling, vol. 1, edited by V. Z. Marmarelis, Los Angeles, Biomedical Simulations Resource, University of Southern California, 1987, pp. 278–288.Google Scholar
  29. 29.
    Klein, S., and S. Yasui. Nonlinear systems analysis with non-Gaussian white stimuli: general basis functionals and kernels.IEEE Trans. Inform. Theory 25:495–500, 1979.CrossRefGoogle Scholar
  30. 30.
    Kolmogoroff, A. N., and S. V. Fomin, eds.,Elements of the Theory of Functions and Functional Analysis, New York: Graylock Press, 1957.Google Scholar
  31. 31.
    Korenberg, M. J. Aspects of time-varying and nonlinear systems theory with biological applications. Montréal, Quebec Canada: McGill University, Ph.D. Thesis, 1972.Google Scholar
  32. 32.
    Korenberg, M. J. Identification of biological cascades of linear and static nonlinear systems.Proc. 16th Midwest Symp. Circ. Theory 18.2:1–9, 1973.Google Scholar
  33. 33.
    Korenberg, M. J. Cross-correlation analysis of neural cascades.Proc. 10th Ann. Rocky Mountain Bioeng. Symp. 1: 47–52, 1973.Google Scholar
  34. 34.
    Korenberg, M. J. Statistical identification of parallel cascades of linear and nonlinear systems.IFAC Symp. Ident. Sys. Param. Est. 1:580–585, 1982.Google Scholar
  35. 35.
    Korenberg, M. J. Statistical identification of Volterra kernels of high order systems.IEEE Int. Symp. Circ. Sys. 2:570–575, 1984.Google Scholar
  36. 36.
    Korenberg, M. J. Identifying noisy cascades of linear and static nonlinear systems.IFAC Symp. Ident. Sys. Param. Est. 1:421–426, 1985.Google Scholar
  37. 37.
    Korenberg, M. J. Functional expansions, parallel cascades, and nonlinear difference equations. In:Advanced Methods of Physiological System Modeling, vol. 1, edited by V. Z. Marmarelis. Los Angeles: Biomedical Simulations Resource, University of Southern California, 1987, pp. 221–240.Google Scholar
  38. 38.
    Korenberg, M. J. Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm.Ann. Biomed. Eng. 16:123–142, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Korenberg, M. J. A fast orthogonal search method for biological time-series analysis and system identification.Proc. IEEE Int. Conf. Sys. Man. Cybern. Cambridge, MA: 1989, pp. 459–465.Google Scholar
  40. 40.
    Korenberg, M. J. A robust orthogonal algorithm for system identification and time-series analysis.Biol. Cybern. 60: 267–276, 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    Korenberg, M. J. A rapid and accurate method for estimating the kernels of a nonlinear system with lengthy memory. 15th Biennial Symposium Communication, Queen's University, Kingston, Ontario, Canada, 1990.Google Scholar
  42. 42.
    Korenberg, M. J. Some new approaches to nonlinear system identification and time-series analysis.Proc. 12th Annu. Int. Conf. IEEE Eng. Med. & Biol. Soc. 12(1):20–21, 1990.Google Scholar
  43. 43.
    Korenberg, M. J. Parallel cascade identification and kernel estimation for nonlinear systems.Ann. Biomed. Eng. 19: 429–455, 1991.PubMedCrossRefGoogle Scholar
  44. 44.
    Korenberg, M. J., S. B. Bruder, M. Mancini, and P. J. McIlroy. Exact kernel estimation using a noise input: measuring invariant characteristics of cortical cells. Ninth International Conference on Noise in Physical Systems, edited by C. M. Van Vliet. Tea Neck, NJ: World Scientific Publishing Co., 1987, pp. 583–588.Google Scholar
  45. 45.
    Korenberg, M. J., S. B. Bruder, and P. J. McIlroy. Exact orthogonal kernel estimation from finite data records: extending Wiener's identification of nonlinear systems.Ann. Biomed. Eng. 16:201–214, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Korenberg, M. J., and I. W. Hunter. The identification of nonlinear biological systems: LNL cascade models.Biol. Cybern. 55:125–134, 1986.PubMedGoogle Scholar
  47. 47.
    Korenberg, M. J., and I. W. Hunter. The identification of nonlinear biological systems: Wiener kernel approaches.Ann. Biomed. Eng. 18:629–654, 1990.PubMedCrossRefGoogle Scholar
  48. 48.
    Korenberg, M. J., H. M. Sakai, and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels.J. Neurophysiol. 61:1110–1120, 1989.PubMedGoogle Scholar
  49. 49.
    Krenz, W. C., and L. W. Stark, The interpretation of functional series expansions,Ann. Biomed. Eng. 19:485–508, 1991.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee, Y. W. Contribution of Norbert Wiener to linear theory and nonlinear theory in engineering. In:Selected Papers of Norbert Wiener, SIAM, Cambridge, MA: MIT Press, 1964, pp. 17–33.Google Scholar
  51. 51.
    Lee, Y. W., and M. Schetzen. Measurement of the Wiener kernels of a non-linear system by crosscorrelation.Int. J. Contr. 2:237–254, 1965.CrossRefGoogle Scholar
  52. 52.
    Litt, H. I. A Nonlinear Kernel Investigation of Magnetic Resonance Imaging and Computed Tomography. Buffalo, NY: State University of New York at Buffalo, Ph.D. Thesis, 1994.Google Scholar
  53. 53.
    LYSIS (Ver. 5) Software Program. Los Angeles: Biomedical Simulations Resource, University Southern California.Google Scholar
  54. 54.
    Marmarelis, P. Z., and K. I. Naka. White-noise analysis of a neuron chain: an application of the Wiener theory.Science 175:1276–1278, 1972.PubMedCrossRefGoogle Scholar
  55. 55.
    Marmarelis, P. Z., and K. I. Naka. Nonlinear analysis and synthesis of receptive-field responses in the catfish retina.J Neurophys. 36:605–648, 1973.Google Scholar
  56. 56.
    Marmarelis, P. Z., and V. Z. Marmarelis, eds.Analysis of Physiological Systems, New York: Plenum Press, 1978.Google Scholar
  57. 57.
    Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels.Ann. Biomed. Eng. 21:573–589, 1993.PubMedCrossRefGoogle Scholar
  58. 58.
    Marmarelis, V. Z., K. H. Chon, Y.-M. Chen, D. J. Marsh, and N.-H. Holstein-Rathlou. Nonlinear analysis of renal autoregulation under broadband forcing conditions,Ann. Biomed. Eng. 21:591–603, 1993.PubMedCrossRefGoogle Scholar
  59. 59.
    Mohler, R.Nonlinear Systems: Vol. 1—Dynamics and Control and Vol. 2—Applications to Bilinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.Google Scholar
  60. 60.
    Nabet, B., and R. B. Pinter. Multiplicative inhibition and Volterra series expansion. In:Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, edited by R. B. Pinter and B. Nabet, Boca Raton, FL: CRC Press, 1992, pp. 475–491.Google Scholar
  61. 61.
    Ogura, H. Estimation of Wiener kernels of a nonlinear system and fast algorithm using digital Laguerre filters, Proceedings of the 15th NIBB Conference on Information Processing in Neuron Network: White-Noise Analysis, edited by K-I. Naka and Y.-I. Ando, Okazaki, Japan: National Institute for Basic Biology, 1986, pp. 14–62.Google Scholar
  62. 62.
    Palm, G., and T. Poggio, Stochastic identification methods for nonlinear systems: an extension of the Weiner theory.J. Appl. Math. 34:524–534, 1978.Google Scholar
  63. 63.
    Pece, A. E. C., A. S. French, M. J. Korenberg, and J. E. Kuster. Nonlinear mechanisms for gain adaptation in locust photoreceptors.Biophys. J. 57:733–743, 1990.PubMedGoogle Scholar
  64. 64.
    Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, eds.Numerical Recipes in C, New York: Cambridge University Press, 1988.Google Scholar
  65. 65.
    Rice, J. R. A theory of condition.J. Numer. Anal. 3:287–310, 1966.CrossRefGoogle Scholar
  66. 66.
    Rugh, W. J., ed.Nonlinear System Theory: The Volterral Wiener Approach, Baltimore: Johns Hopkins University Press. 1981.Google Scholar
  67. 67.
    Sakai, H. M., and K.-I. Naka. Signal transmission in the catfish retina. IV. Transmission to ganglion cells.J. Neurophysiol. 58:1307–1328, 1987.PubMedGoogle Scholar
  68. 68.
    Sakai, H. M., and K.-I. Naka. Signal transmission in the catfish retina. V. Sensitivity and circuit.J. Neurophysiol. 58:1329–1350, 1987.PubMedGoogle Scholar
  69. 69.
    Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells.J. Neurophysiol. 60:1549–1567, 1988.PubMedGoogle Scholar
  70. 70.
    Sakai, H. M., and K.-I. Naka Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells.J. Neurophysiol. 60:1568–1583, 1988.PubMedGoogle Scholar
  71. 71.
    Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells.J. Neurophysiol. 63:105–119, 1990.PubMedGoogle Scholar
  72. 72.
    Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. V. Interactions between NA and NB amacrine cells.J. Neurophysiol. 63:120–130, 1990.PubMedGoogle Scholar
  73. 73.
    Sakai, H. M., K.-I. Naka, and M. J. Korenberg, White noise analysis in visual science.Vis. Neurosci. 1:287–296, 1988.PubMedGoogle Scholar
  74. 74.
    Sakuranaga, M., Y-J. Ando, and K-I. Naka. Dynamics of ganglion cell response in the catfish and frog retinas.J. Gen. Physiol. 90:229–259, 1987.PubMedCrossRefGoogle Scholar
  75. 75.
    Sakuranaga, M., S. Sato, E. Hida, and K-I. Naka, Nonlinear analysis: mathematical theory and biological applications,CRC Crit. Rev. Biomed. Eng. 14:127–184, 1986.Google Scholar
  76. 76.
    Sandberg, I. W. Expansions for discrete-time nonlinear systems.Circuit Sys. Signal Process. 2:179–192, 1983.CrossRefGoogle Scholar
  77. 77.
    Sandberg, A., and L. Stark. Wiener G-function analysis as an approach to nonlinear characteristics of human pupil light reflex.Brain Res. 11:194–211, 1968.PubMedCrossRefGoogle Scholar
  78. 78.
    Schetzen, M. Measurement of the kernels of a nonlinear system of finite order.Int. J. Control. 1:251–263, 1965.CrossRefGoogle Scholar
  79. 79.
    Schetzen, M., ed.The Volterra and Wiener Theories of Nonlinear Systems (second edition) New York: John Wiley & Sons, 1980.Google Scholar
  80. 80.
    Schetzen, M. Nonlinear system modeling based on the Wiener theory.Proc. IEEE 69:1557–1573, 1981.Google Scholar
  81. 81.
    Shinners, S. M., ed.Modern Control System Theory and Application. Boston: Addison-Wesley, 1972.Google Scholar
  82. 82.
    Spekreijse, H., and H. Oosting. Linearizing: a method for analyzing and synthesizing nonlinear systems.Kybernetik 7:22–31, 1970.PubMedCrossRefGoogle Scholar
  83. 83.
    Stark, L. W. Stability, oscillation, and noise in the human pupillary servo mechanism.Bol. del Inst. de Estudios Medicos y Biologicos 21:201–222, 1963.Google Scholar
  84. 84.
    Stark, L. W., ed. Neurological control systems: studies in bioengineering, New York: Plenum Press, 1968.Google Scholar
  85. 85.
    Stark, L. W. The pupillary control system: its nonlinear adaptive and stochastic engineering design characteristics.Automatica 5:655–676, 1969.CrossRefGoogle Scholar
  86. 86.
    Stark, L. W., Y. Takahashi, and G. Zames. Nonlinear servoanalysis of human lens accommodation.IEEE Trans. Sys. Sci. Cyber. 1:75–83, 1965.Google Scholar
  87. 87.
    Strang, G., ed. Linear Algebra and its Applications. (second edition) New York: Academic Press, 1980.Google Scholar
  88. 88.
    Sunay, M. O., and M. M. Fahmy. An orthogonal approach to the spatial-domain design of 2-D recursive and nonrecursive nonlinear filters.IEEE Trans. Circ. Sys. 41:669–677, 1994.CrossRefGoogle Scholar
  89. 89.
    Sutter, E. E. A practical non-stochastic approach to nonlinear time-domain analysis. In:Advanced Methods of Physiological System Modeling, vol. 1, edited by V. Z. Marmarelis. Los Angeles: Biomedical Simulations Resource, University of Southern California, 1987, pp. 303–315.Google Scholar
  90. 90.
    Sutter, E. E. A deterministic approach to nonlinear systems analysis. In:Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, edited by R. B. Pinter and B. Nabet, Boca Raton, FL: CRC Press, 1992, pp. 171–220.Google Scholar
  91. 91.
    Sutter, E. E., and D. Tran. The field topography of ERG components in man. I. The phototopic luminance response.Vis. Res. 32:443–446, 1992.Google Scholar
  92. 92.
    Victor, J. D. The fractal dimension of a test signal: implications for system identification procedures.Biol. Cybern. 57:421–426, 1987.PubMedCrossRefGoogle Scholar
  93. 93.
    Victor, J. D., and B. W. Knight. Nonlinear analysis with an arbitrary stimulus ensemble.Q. Appl. Math. 37:113–136, 1979.Google Scholar
  94. 94.
    Volterra, V., ed. Leçons sur les Fonctions de Lignes, Paris: Gauthier-Villars, 1913.Google Scholar
  95. 95.
    Volterra, V., ed.Theory of Functionals and of Integral and Integro-Differential Equations. New York: Dover, 1959.Google Scholar
  96. 96.
    Watanabe, A., and L. Stark. Kernel method for nonlinear analysis: identification of a biological control system.Math. Biosci. 27:99–108, 1975.CrossRefGoogle Scholar
  97. 97.
    Wiener, N., ed.Nonlinear Problems in Random Theory, Cambridge, MA: MIT Press, 1958.Google Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • Michael J. Korenberg
    • 1
  • Ian W. Hunter
    • 2
  1. 1.Department of Electrical and Computer EngineeringQueen's UniversityKingstonCanada
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations