Skip to main content
Log in

Fatigue crack growth in 5052-H34 aluminum in vacuum and active gas environments

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Center-notched sheet specimens of 5052-H34 aluminum alloy were fatigued at load ratios (R) of 0, 0.2, and 0.43. Crack growth rate at each value ofR was studied as a function of stress intensity amplitude (ΔK) and water vapor or oxygen pressure, referenced to vacuum and laboratory air. Crack rates at a givenR and ΔK were found to increase within the range defined by vacuum and air for a corresponding increase of water vapor pressure but remained essentially constant over the range of oxygen pressures tested. In water vapor a crack rate transition pressure (separating low pressure-low growth rates from high pressure-high growth rates), inversely related toR, was observed. Results are discussed in terms of several models predicting the critical pressure of an active gas environment. A mechanism involving hydrogen embrittlement and one involving a humidity dependent aluminum oxide modulus are both found to be plausible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Gough and D. J. Sopwith:J. Inst. Metals, 1932, vol. 49, p. 93.

    Google Scholar 

  2. H. J. Gough and D. J. Sopwith:J. Inst. Metals, 1935, vol. 56, p. 55.

    Google Scholar 

  3. H. J. Gough and D. J. Sopwith:J. Inst. Metals, 1946, vol. 72, p. 415.

    CAS  Google Scholar 

  4. N. J. Wadsworth and 3. Hutchings:Phil. Mag., 1958, vol. 3, p. 1154.

    Article  CAS  ADS  Google Scholar 

  5. T. Broom and N. Nicholson:J. Inst. Metals, 1960-61, vol. 89, p. 183.

    Google Scholar 

  6. A. Hartman:Int. J. Fract. Mech., 1965, vol. 1, p. 167.

    CAS  Google Scholar 

  7. F. J. Bradshaw and C. Wheeler:Appl. Mater. Res., 1966, vol. 5, p. 112.

    CAS  Google Scholar 

  8. F. J. Bradshaw and C. Wheeler:Int. J. Fract. Mech., 1969, vol. 5 p. 255.

    Google Scholar 

  9. M. J. Hordon:Acta Met., 1966, vol. 14, p. 1173.

    Article  CAS  Google Scholar 

  10. M. A. Wright and M. J. Hordon:Acta Met., 1967, vol. 15, p. 430.

    Article  CAS  Google Scholar 

  11. M. J. Hordon and M. A. Wright:Trans. TMS-AIME, 1968, vol. 242, p. 2011.

    Google Scholar 

  12. R. P. Wei:Int. J. Fract. Mech., 1968, vol. 4, p. 159.

    Google Scholar 

  13. R. J. Donahue, H. Mcl. Clark, P. Atanmo, R. Kumble, and A. J. McEvily:Int. J. Fract. Mech., 1972, vol. 8, p. 209.

    Article  Google Scholar 

  14. O. F. Devereux, J. Dresty, and B. Kovacs:Met. Trans., 1971, vol. 2, p. 3225.

    CAS  Google Scholar 

  15. M. Hudson and J. T. Scardina:Engr. Fract. Mech, 1969, vol. 1, p. 429.

    Article  Google Scholar 

  16. S. Pearson: RAE TR-6915, 1969.

  17. J. A. Feeney, J.C. Millan, and R.P. Wei:Met. Trans., 1970, vol. 1, p. 1741.

    Article  CAS  Google Scholar 

  18. R. P. Wei and J. D. Landis:Int. J. Fract. Mech., 1969, vol. 5, p. 69.

    Google Scholar 

  19. D. A. Meyn:Trans. ASM, 1968, vol. 61, p. 52.

    Google Scholar 

  20. K. U. Snowden:Phil. Mag., 1964, vol. 10, p. 435.

    Article  CAS  ADS  Google Scholar 

  21. K. U. Snowden:Acta Met., 1964, vol. 12, p. 295.

    Article  CAS  Google Scholar 

  22. K. U. Snowden:J. Appl. Phys., 1963, vol. 34, p. 3150.

    Article  ADS  Google Scholar 

  23. M. R. Achter and H. W. Fox:Trans. TMS-AIME, 1959, vol. 215, p. 295.

    CAS  Google Scholar 

  24. M. R. Achter:Scripta Met., 1968, vol. 2, p. 525.

    Article  Google Scholar 

  25. S. Dushman:Scientific Foundations of Vacuum Technique, J. M. Lafferty, ed., ch. 2, John Wiley, N.Y., 1962.

    Google Scholar 

  26. F. J. Bradshaw:Scripta Met., 1967, vol. 1, p. 41.

    Article  Google Scholar 

  27. R. G. Weber and A. J. McEvily: “The Stress Corrosion Cracking of a Non-Age-Hardenable Aluminum Alloy,” inFracture, 1969: Proceedings of the 2nd International Conference on Fracture, Chapman and Hall, London, 1969.

    Google Scholar 

  28. W. H. Bray:J. Mater., 1970, vol. 5, p. 233.

    Article  CAS  Google Scholar 

  29. A. J. McEvily and R. P. Wei: “Fracture Mechanics and Corrosion Fatigue,” inCorrosion Fatigue: Chemistry, Mechanics, and Microstructure, NACE, Houston, 1972.

    Google Scholar 

  30. M. Speidel: “Hydrogen Embrittlement of Aluminum Alloys?”, presented at Conference on Hydrogen Embrittlement, Seven Springs, U.S.A., Sept. 1973, to be published.

  31. D. Broek: Discussion in Ref. 12.

  32. J. Grosskreutz:Surface Sci., 1967, vol. 8, p. 173.

    Article  CAS  ADS  Google Scholar 

  33. J. Grosskreutz: “The Effect of Surface Films on Fatigue Crack Initiation”,Corrosion Fatigue: Chemistry, Mechanics, and Microstructure, NACE, Houston, 1972.

    Google Scholar 

  34. R. Weeks, J. Dundurs, and M. Stippes:Int. J. Engr. Sci., 1968, vol. 6, p. 365.

    Article  MATH  Google Scholar 

  35. G. H. Connors:Int. J. Engr. Sci., 1967, vol. 5, p. 25.

    Article  MathSciNet  Google Scholar 

  36. J. Grosskreutz:J. Electrochem. Soc, 1969, vol. 116, p. 1232.

    Article  Google Scholar 

  37. N. Cabrera and F. Mott:Rept. Progr. Phys., 194849, vol. 12, p. 163.

    Article  Google Scholar 

  38. J. Grosskreutz and M. B. McNeil:J. Appl. Phys., 1969, vol. 40, p. 355.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enochs, J.S., Devereux, O.F. Fatigue crack growth in 5052-H34 aluminum in vacuum and active gas environments. Metall Trans A 6, 391 (1975). https://doi.org/10.1007/BF02667295

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02667295

Keywords

Navigation