Skip to main content
Log in

A generalized expression for lag-time in the gas-phase permeation of hollow tubes

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A generalized expression for the nonsteady state parameter, lag-time, has been obtained from Fick’s second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: 1) diffusion controlled transport, 2) phase boundary reaction control at the inlet surface, and 3) phase boundary reaction control at the outlet surface. In all three cases the lagtime expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for α-phase titanium and α-phase iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Constant

a :

Inside radius of a hollow, cylindrical tube (cm)

B :

Constant

b :

Outside radius of a hollow, cylindrical tube

c :

Concentration

c g :

Molecular hydrogen concentration in the gas phase

D :

Coefficient for diffusion within the metal lattice (cm2 s-1)

D o :

Preexponential constant for diffusion

h a :

Reaction rate constant at r = a

h b :

Reaction rate constant at r = b

Q :

Quantity of gas passing out of the exit surface, r = b

Q D :

Activation energy for diffusion (J mol-1)

r :

Radius, a ≤ r ≤ b

s :

Constant of proportionality

t :

Time (s)

t L :

Lag-time parameter for nonsteady-state transport (s)

References

  1. J. Jaeger:Trans. Faraday Soc., 1946, vol. 42, pp. 615–16.

    Article  CAS  Google Scholar 

  2. R. M. Barrer:Trans. Faraday Soc., 1940, vol. XXXVI, pp. 1235–48.

    Article  Google Scholar 

  3. D. L. Johnson and H. G. Nelson:Met. Trans., 1973, vol. 4, pp. 569–73.

    Article  CAS  Google Scholar 

  4. K. K. Shah and D. L. Johnson: American Society for Metals, Cleveland, Ohio, 1974.

  5. H. S. Carslaw and J. Jaeger:Conduction of Heat in Solids, 2nd ed., vol. 1, pp. 332–33, Oxford Press, London, England, 1959.

    Google Scholar 

  6. H. S. Carslaw and J. C. Jaeger:Operational Methods in Applied Mathematics, 2nd ed., vol. 1, pp. 285–87, Oxford Press, London, England, 1953.

    Google Scholar 

  7. R. J. Wasilewski and G. L. Kehl: Watertown Arsenal Lab., Report No. WAL 401-149-11 A, July 13, 1953.

  8. T. P. Papazoglou and M. T. Hepworth:Trans. TMS-AIME, 1968, vol. 242, pp. 682–85.

    CAS  Google Scholar 

  9. K. K. Shah: Dept. of Mechanical Engineering, University of Nebraska-Lincoln, unpublished research, 1974.

  10. Howard G. Nelson and James E. Stein: NASA TN D-7265, National Aeronautics and Space Administration, Washington, D.C., April 1973.

  11. E. W. Johnson and M. L. Hill:Trans. TMS-AIME, 1960, vol. 218, pp. 1104–12.

    Google Scholar 

  12. R. A. Oriani:ActaMet., 1970, vol. 18, pp. 147–57.

    CAS  Google Scholar 

  13. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, pp. 32–49, Nat’l. Assoc. of Corrosion Engrs., Houston, Texas, 1969.

    Google Scholar 

  14. A. J. Kumnick and H. H. Johnson:Met. Trans., 1974, vol. 5, pp. 1199–1206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with NASA-Ames Research Center, Materials Science Branch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, K.K., Nelson, H.G., Johnson, D.L. et al. A generalized expression for lag-time in the gas-phase permeation of hollow tubes. Metall Trans A 6, 373 (1975). https://doi.org/10.1007/BF02667292

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02667292

Keywords

Navigation