Skip to main content
Log in

Yield point behavior in extruded aluminum rod

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The microstructure of aluminum, extruded under industrial conditions at 250°C has been investigated in relation to the purity of the billet. Electron microscopy was used to observe the substructure and Kikuchi diffraction techniques were used to measure boundary angles and thus distinguish between recrystallization and repolygonization for samples of two different purities (99.7 pct Al and 99.99 pct Al) extruded under identical conditions. High tensile flow stresses of about 8000 to 9000 psi (55 to 62 MN/m2) were observed in specimens taken from the first sections of the high purity extrusion. These high strength levels were attributed to the presence of fine microstructure. When small recrystallized grains (0.5 to 2.0 μm diam) were present a yield drop was observed. This phenomenon is associated with the condition where nearly all the dislocations are likely to be immobile. The absence of a yield point in the 99.7 pct purity aluminum extruded under the same conditions as the 99.99 pct purity aluminum is due to the existence of fine subgrains instead of the fine recrystallized structure. A small yield point in 99.7 pct aluminum was induced by subsequent heat treatment resulting in the formation of small recrystallized grains of similar character to those in the higher purity extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. O. Hall:Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, 1970.

    Google Scholar 

  2. W. J. McGregor Tegart:Elements of Mechanical Metallurgy, MacMillan Co., New York, 1967.

    Google Scholar 

  3. A. H. Cottrell:Dislocations and Plastic Flow in Crystals, Oxford Univ. Press, London, 1953.

    MATH  Google Scholar 

  4. W. G. Johnston and J. J. Gilman:J. Appl. Phys., 1959, vol. 30, p. 129.

    Article  CAS  ADS  Google Scholar 

  5. J. M. Li:Trans. TMS-AIME, 1963, vol. 227, p. 239.

    CAS  Google Scholar 

  6. A. H. Cottrell:Report of a Conference on Strength of Solids, p. 30, Physical Society, London, 1948.

    Google Scholar 

  7. A. H. Cottrell and B. A. Bilby:Proc. Phys. Soc, 1949, vol. A62, p. 49.

    ADS  Google Scholar 

  8. H. Abdel-Raouf and A. Plumtree:Met. Trans., 1971, vol. 2, p. 1251.

    Article  CAS  Google Scholar 

  9. G. F. Boiling:Phil. Mag., 1959, vol. 4, p. 537.

    Article  ADS  Google Scholar 

  10. P. Haasen and A. Kelly:Acta Met., 1957, vol. 5, p. 192.

    Article  CAS  Google Scholar 

  11. R. J. Stokes and A. H. Cottrell:Acta Met., 1954, vol. 2, p. 341.

    Article  Google Scholar 

  12. H. K. Birnbaum and F. R. Tuler:J. Appl. Phys., 1961, vol. 32, p. 1403.

    Article  ADS  Google Scholar 

  13. R. J. Price and A. Kelly:Acta Met., 1964, vol. 12, p. 159.

    Article  CAS  Google Scholar 

  14. J. Wilson and R. G. Berggren:Proc. ASTM, 1955, vol. 55, p. 689.

    CAS  Google Scholar 

  15. A. H. Cottrell and R. J. Stokes:Proc. Roy. Soc., 1955, vol. A233, p. 17.

    ADS  Google Scholar 

  16. I. R. Kramer:Trans. TMS-AIME, 1963, vol. 227, p. 1003.

    CAS  Google Scholar 

  17. CFeng and I. R. Kramer:Trans. TMS-AIME, 1965, vol. 233, p. 1467.

    CAS  Google Scholar 

  18. B. J. Brindley and P. J. Worthington:Met. Rev., 1970, No. 145, p. 101.

  19. D. E. Sonon and G. V. Smith:Trans. TMS-AIME, 1968, vol. 242, p. 1527.

    CAS  Google Scholar 

  20. H. Suzuki:Dislocations and Mechanical Properties of Crystals, p. 361, Wiley, New York, 1957.

    Google Scholar 

  21. A. H. Cottrell, S. Hunter, and F. R. N. Nabarro:Phil. Mag., 1953, vol. 44, p. 1064.

    CAS  Google Scholar 

  22. G. N. Deep: M.A. Sc. Thesis, University of Waterloo, 1971.

  23. M. von Heimendahl, W. Bell, and G. Thomas:J. Appl. Phys., 1964, vol. 35, p. 3614.

    Article  ADS  Google Scholar 

  24. G. Thomas:Trans. TMS-AIME, 1965, vol. 233, p. 1608.

    CAS  Google Scholar 

  25. W. R. Hibbard:J. Inst. Metals, 1950, vol. 77, p. 581.

    CAS  Google Scholar 

  26. A. T. English and G. Chin:Acta Met., 1965, vol. 13, p. 1013.

    Article  CAS  Google Scholar 

  27. J. McHargue, L. K. Jetter, and J. Ogle:Trans. TMS-AIME, 1959, vol. 215, p. 831.

    CAS  Google Scholar 

  28. A. H. Cottrell:Relation of Properties to Microstructures, p. 131, A.S.M., Cleveland, 1954.

    Google Scholar 

  29. D. J. Abson and J. J. Jonas:Met. Sci. J., 1970, vol. 4, p. 24.

    CAS  Google Scholar 

  30. J. J. Jonas, M. Sellars, and W. J. McGregor Tegart:Met. Rev., 1969, No. 130, p. 1.

  31. N. F. Mott:J. Inst. Metals, 1946, vol. 72, p. 367.

    CAS  Google Scholar 

  32. J. M. Li and Y. T. Chou:Met. Trans., 1970, vol. 1, p. 1145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deep, G., Plumtree, A. Yield point behavior in extruded aluminum rod. Metall Trans A 6, 359 (1975). https://doi.org/10.1007/BF02667290

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02667290

Keywords

Navigation