Skip to main content
Log in

Rate of convergence of stochastic approximation procedures in a banach space

  • Published:
Cybernetics and Systems Analysis Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. P. Korostelev, “A comment on upper functions for stochastic approximation procedures,” Teoriya Veroyatnostei i Ee Primeneniya,28, No. 4, 769–775 (1983).

    MATH  Google Scholar 

  2. A. P. Korostelev, Stochastic Recursive Procedures (Local Properties) [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  3. G. Mark, “Loglog-Invarianzprinzipien fur Prozesse der stochastischen Approximation,” Mitteil. Math. Sem. Giessen, No. 153 (1982).

  4. H. Walk, “Limit behaviour of stochastic approximation processes,” Stat. Decis.,6, 109–128 (1988).

    Google Scholar 

  5. H. Walk, “Foundations of stochastic approximation,” in: L. Ljung, G. Pflug, and H. Walk (eds.), Stochastic Approximation and Optimization of Random Systems, DMV Seminar Blaubeuren, May 28–June 4, 1989, Birkhauser, Basel (1992), pp. 1–51.

    Google Scholar 

  6. V. A. Koval', “Rate of convergence of stochastic approximation procedures,” Ukr. Mat. Zh.,46, No. 8, 997–1002 (1994).

    Google Scholar 

  7. V. Koval and R. Schwabe, “Exact bounds for the rate of convergence in general stochastic approximation procedures,” Stoch. Anal. Appl.,16, No. 3, 509–524 (1998).

    Google Scholar 

  8. D. Ruppert, “Almost sure approximation to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise,” Ann. Prob.,10, No. 1, 178–187 (1982).

    MATH  Google Scholar 

  9. L. Ljung, “Strong convergence of a stochastic approximation algorithm,” Ann. Stat.,6, No. 3, 680–696 (1978).

    MATH  Google Scholar 

  10. P. Dupuis and H. J. Kushner, “Stochastic approximation and large deviations: upper bounds and w.p. convergence,” SLAM J. Contr. Optim.,27, No. 5, 1108–1135 (1989).

    Article  MATH  Google Scholar 

  11. Y. M. Zhu and G. Yin, “Stochastic approximation in real time: a pipeline approach,” J. Comput. Math.,12, No. 1, 21–30 (1994).

    MATH  Google Scholar 

  12. H. Walk and L. Zsido, “Convergence of the Robbins-Monro method for linear problems in a Banach space,” J. Math. Anal. Appl.,139, No. 1, 152–177 (1989).

    Article  MATH  Google Scholar 

  13. G. Yin and Y. M. Zhu, “On H-valued Robbins-Monro processes,” J. Multivar. Anal.,34, No. 1, 116–140 (1990).

    Article  MATH  Google Scholar 

  14. V. V. Buldygin and V. A. Koval, “Convergence of stochastic approximation method in a Banach space,” Teor. Imovirn. Mat. Stat. [in Ukrainian], No. 48, 3–9 (1993).

  15. L. Ljung, Convergence of Recursive Stochastic Algorithms, Report No. 7403, Lund Inst. Technol., Dept. Autom. Contr. (1974).

  16. J. Kuelbs and W. Philipp, “Almost sure invariance principles for partial sums of mixing Banach-valued random variables,” Ann. Prob.,8, No. 6, 1003–1036 (1980).

    MATH  Google Scholar 

  17. H. Dehling, “Limit theorems for sums of weakly dependent Banach space valued random variables,” Z. Wahrschein. Verw. Geb.,63, 393–432 (1983).

    Article  MATH  Google Scholar 

  18. E. Eberlein, “On strong invariance principles under dependence assumptions,” Ann. Prob.,14, No. 1, 260–270 (1986).

    MATH  Google Scholar 

  19. W. Philipp, “Invariance principles for independent and weakly dependent random variables,” in: E. Eberlein and M. Taqqu (eds.), Dependence in Probability and Statistics, Birkhauser, Basel (1986), pp. 225–268.

    Google Scholar 

  20. U. Einmahl, “A useful estimate in the multidimensional invariance principle,” Prob. Theor. Rel. Fields,76, No. 1, 81–101 (1987).

    Article  MATH  Google Scholar 

  21. U. Einmahl, “Strong invariance principles for partial sums of independent random vectors,” Ann. Prob.,15, No. 4, 1419–1440 (1987).

    MATH  Google Scholar 

  22. U. Einmahl, “Extensions of results of Komlos, Major, and Tusnady to the multivariate case,” J. Multivar. Anal.,28, No. 1, 20–68 (1989).

    Article  MATH  Google Scholar 

  23. E. Berger, “An almost sure invariance principle for stationary ergodic sequences of Banach space valued random variables,” Prob. Theor. Rel. Fields,84, No. 2, 161–201 (1990).

    Article  MATH  Google Scholar 

  24. J. Kuelbs and R. LePage, “The law of the iterated logarithm for Brownian motion in a Banach space,” Trans. AMS,185, 253–265 (1973).

    Article  Google Scholar 

  25. I. Torrang, On the Law of the Iterated Logarithm for Subsequences, Doctoral dissertation, Uppsala Univ. (1989).

  26. I. K. Matsak, “The law of iterated logarithm for partial sums of independent random variables in a Banach space,” Ukr. Mat. Zh.,45, No. 9, 1225–1231 (1993).

    MATH  Google Scholar 

  27. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, New York (1991).

    MATH  Google Scholar 

Download references

Authors

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 3–17, May–June, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koval’, V.A. Rate of convergence of stochastic approximation procedures in a banach space. Cybern Syst Anal 34, 386–394 (1998). https://doi.org/10.1007/BF02666980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666980

Keywords

Navigation