Skip to main content
Log in

The influence of mold behavior on the production of continuously cast steel billets

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The origins of rhomboidity, longitudinal corner cracks, and breakouts in the continuous casting of steel billets have been investigated with the aid of heat flow and stress analyses of the mold wall. It has been shown that these problems can be linked to intermittent boiling in the cooling water channel, which may occur asynchronously on different faces of the mold. A mechanism based on asynchronous, intermittent boiling and nonsymmetrical cooling of the mold wall has been formulated which explains the influence of billet size, cooling-water velocity, water pressure, cold face roughness, and steel carbon content on the formation of rhomboidity and longitudinal corner cracks. Prevention of intermittent boiling is thereby shown to be a key factor in the production of defect-free billets. This can be accomplished by raising cooling water velocity, increasing mold wall thickness, increasing water back pressure, or roughening the cold face near the meniscus. These measures should also be effective in reducing the frequency of breakouts beneath the mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cp :

Specific heat, J/kg K

Csf :

Empirical constant that depends on the nature of the heating surface/fluid combination

dw :

Water channel gap, width, m

DH :

Hydraulic diameter, m

g :

Gravitational acceleration, m/s2

ha :

Radiant heat-transfer coefficient at the hot face above the meniscus, W/m2 K

hfc :

Forced convection heat-transfer coefficient

hw :

Heat-transfer coefficient at the mold/cooling water interface

Hfg :

Latent heat of vaporization, J/kg

k :

Thermal conductivity, W/mK

L :

Distance from entrance of channel, m

P :

Water pressure, kPa

Pr :

Prandtl number

qb :

Boiling heat flux, W/m2

qfc :

Forced convection heat flux

qin :

Heat flux at point of incipient boiling

qo :

Heat flux from mold to cooling water

qs :

Heat flux from steel to mold

qir :

Heat flux in transition region between forced convection and nucleate boiling

Re :

Reynolds number

t :

Time, s

T :

Mold wall temperature, K

To :

Ambient temperature

T0 :

Initial mold temperature

Tsat :

Saturation temperature of water

Tw :

Water temperature

Tow :

Initial water temperature

V :

Velocity of cooling water in channel, m/s

x :

Transverse spatial coordinate, m

XM :

Thickness of mold wall, m

z :

Longitudinal spatial coordinate, m

ZF :

Height of freeboard in the mold, m

ZM :

Mold length, m

μ :

Viscosity of fluid,N ⋅s/m2

π :

Density of fluid, kg/m3

σ:

Surface tension of liquid/vapor interface,N/m

f :

Fluid

l :

Liquid

m :

Mold

v:

Saturated vapor

w :

Water

References

  1. I.V. Samarasekera and J.K. Brimacombe:Can. Met. Quart., 1979, vol. 18, pp. 251–66.

    CAS  Google Scholar 

  2. I. V. Samarasekera, D. L. Anderson, and J. K. Brimacombe:Metall. Trans. B, 1982, vol. 13B, pp. 91–104.

    CAS  Google Scholar 

  3. D. I. Brown:Open Hearth Proc, AIME, 1965, vol. 48, pp. 102–10.

    CAS  Google Scholar 

  4. J. E. Lait, J. K. Brimacombe, F. Weinberg, and F. C. Muttitt:Open Hearth Proc. AIME, 1973, vol. 56, pp. 269–302.

    CAS  Google Scholar 

  5. J. K. Brimacombe, E. B. Hawbolt, and F. Weinberg:Metall. Trans. B, 1979, vol. 10B, pp. 279–92.

    Article  CAS  Google Scholar 

  6. Y. Aketa and K. Ushijima:Tetsu-to-Hagané, 1960, vol. 46, pp. 1733–40.

    Google Scholar 

  7. H. G. Baumann and W.J. Löpmann:Wire World Int., 1974, vol. 16, pp. 149–55.

    Google Scholar 

  8. V. P. Perminov, N.M. Lapotyshkin, V. E. Girskii, and A.I. Chizhikov.Stal in English, 1968, vol. 7, pp. 560–63.

    Google Scholar 

  9. H. Mori:Tetsu-to-Hagané, 1972, vol. 58, pp. 1511–25.

    CAS  Google Scholar 

  10. W. P. Young and W. T. Whitfield:Open Hearth Proc, AIME, 1968, vol. 51, pp. 127–32.

    Google Scholar 

  11. U.K. Matsunaga:Open Hearth Proc, AIME, 1976, vol. 59, pp. 228–48.

    CAS  Google Scholar 

  12. Y. Aketa and K. Ushijima:Tetsu-to-Hagané Overseas, 1962, vol. 2, pp. 334–43.

    Google Scholar 

  13. K. Ushijima:Continuous Casting of Steel, Iron Steel Inst., London, 1964, pp. 59–71.

    Google Scholar 

  14. K. Fujinami: Funabashi Steelworks Ltd., Funabashi, Japan, unpublpublished research, 1977.

  15. J. E. McConnell:Open Hearth Proc, AIME, 1972, vol. 55, pp. 56–72.

    Google Scholar 

  16. Georgetown Texas Steel Corp., private communication.

  17. Jones and Laughlin Steel Corp., private communication.

  18. Chaparral Steel Company, private communication.

  19. Atlantic Steel Company, private communication.

  20. S. N. Singh and K. E. Blazek:Open Hearth Proc AIME, 1976, vol. 59, pp. 264–83.

    CAS  Google Scholar 

  21. Handbook of Heat Transfer, W. M. Rohsenow and J. P. Hartnett, eds., McGraw Hill Book Co., 1973, pp. 13-1, 13-75.

  22. W. H. McAdams:Heat Transmission, 3rd ed., McGraw Hill Book Co., New York, NY, 1954, p. 389.

    Google Scholar 

  23. A. E. Bergles and W. M. Rohsenow:J. Heat Transfer, Trans. ASME, Sen C, August 1964, vol. 86, pp. 365–71.

    CAS  Google Scholar 

  24. M. Jakob:Heat Transfer, John Wiley and Sons, Inc., New York, NY, 1949, vol. 1, p. 638.

    Google Scholar 

  25. C. Corty and A. S. Foust:Chemical Eng. Progr. Symp. Ser. 51, 1955, vol. 17, pp. 1–12.

    Google Scholar 

  26. B. Carnahan, H.A. Luther, and J.O. Wilkes:Applied Numerical Methods, John Wiley and Sons, Inc., 1969.

  27. S. T. Hsu and F. W. Schmidt:J. Heat Transfer, Trans. ASME, Ser. C, August 1961, vol. 83, pp. 254–60.

    CAS  Google Scholar 

  28. R. E. Aseev, V. N. Zhuchin, and V. M. Kondrashin:Steel in the U.S.S.R., April 1972, vol. 2, pp. 284–86.

    Google Scholar 

  29. L.I. Morozenskii, O.A. Mitenev, and V.K. Krutikov:Stal, 1965, no. 4, pp. 272-76.

  30. J.K. Brimacombe, F. Weinberg, and E.B. Hawbolt:Can. Met. Quart., 1980, vol. 19, pp. 215–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samarasekera, I.V., Brimacombe, J.K. The influence of mold behavior on the production of continuously cast steel billets. Metall Trans B 13, 105–116 (1982). https://doi.org/10.1007/BF02666961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666961

Keywords

Navigation