Skip to main content
Log in

Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on temperature dependencies of the electron mobility in the two-dimensional electron gas (2DEG) in AIGaN/GaN heterostructures and in doped bulk GaN. Calculations and experimental data show that the polar optical scattering and ionized impurity scattering are the two dominant scattering mechanisms in bulk GaN for temperatures between 77 and 500K. In the 2DEG in AIGaN/GaN heterostructures, the piezoelectric scattering also plays an important role. Even for doped GaN, with a significant concentration of ionized impurities, a large volume electron concentration in the 2DEG significantly enhances the electron mobility, and the mobility values close to 1700 cm2/Vs may be obtained in the GaN 2DEG at room temperature. The maximum measured Hall mobility at 80K is nearly 5000 cm2/Vs compared to approximately 1200 cm2/Vs in a bulk GaN layer. With a change in temperature from 300 to 80K, the 2DEG in our samples changes from nondegenerate and weakly degenerate to degenerate. Therefore, in order to interpret the experimental data, we propose a new interpolation formula for low field mobility limited by the ionized impurity scattering. This formula is valid for an arbitrary degree of the electron gas degeneracy. Based on our theory, we show that the mobility enhancement in the 2DEG is related to a much higher volume electron concentration in the 2DEG, and, hence, to a more effective screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Littlejohn, J.R. Hauser and T. H. Glisson,Appl. Phys. Lett. 26, 625 (1976).

    Article  Google Scholar 

  2. B. Gelmont, K.S. Kim and M. Shur,J. Appl. Phys. 74, 1818 (1993).

    Article  CAS  Google Scholar 

  3. M. Shur, B. Gelmont, C. Saavedra-Munoz and G. Keiner,Proc. 5th Conf. Silicon Carbide and Related Compounds, 137 (Bristol and Philadelphia: Institute of Physics Publishing, 1994), p. 465.

    Google Scholar 

  4. R.P. Joshi and P.K. Raha,Proc. 5th Conf. Silicon Carbide and Related Compounds, 137 (Bristol and Philadelphia: Institute of Physics Publishing, 1994), p. 687.

    Google Scholar 

  5. V.W.L. Chin, T.L. Tansley and T. Osotchan,J. Appl. Phys. 75, 7365 June (1994).

    Article  CAS  Google Scholar 

  6. D.L. Rode and D.K. Gaskill,Appl. Phys. Lett. 66, 1972 (1995).

    Article  CAS  Google Scholar 

  7. J.G. Kim, A.C. Frenkel, H. Liu and R.M. Park,Appl. Phys. Lett. 65, 91 (1994).

    Article  CAS  Google Scholar 

  8. M. Shur and M. A. Khan,Proc. Optoelectronic Materials,Devices, and Integrated Circuits, SPIE-WEST, Feb. 7 (1995), to be published.

  9. B. Vinter and T. Weil,Superlatt. Microstruct. 3, 481 (1987).

    Article  CAS  Google Scholar 

  10. B. Gelmont, M. Shur and M. Stroscio,J. Appl. Phys. 11, 657, Jan. (1995).

    Article  Google Scholar 

  11. B. Gelmont, B. Lund, K.-S. Kim, G.U. Jensen, M.S. Shur and T.A. Fjeldly,J. Appl. Phys. 71, (10), 4977, May 15 (1992).

    Article  CAS  Google Scholar 

  12. J.S. Blakemore,Solid State Electron. 25, 1067 (1982).

    Article  CAS  Google Scholar 

  13. A.I. Anselm,Introduction to Physics of Semiconductors, MIR (1987).

  14. S. Strite and H. MorkoÇ,J. Vac. Sci. Technol. B 10, (4), 1237 (1992).

    Article  CAS  Google Scholar 

  15. B.K. Ridley,Quantum Processes in Semiconductors, (New York: Oxford University Press, 1982).

    Google Scholar 

  16. A. Bykhovski, B. Gelmont, M.S. Shur and A. Khan,J. Appl. Phys. 76, Feb. 15, 1616 (1995).

    Article  Google Scholar 

  17. M. Shur,Physics of Semiconductor Devices, (New Jersey: Prentice Hall, 1990), p. 132.

    Google Scholar 

  18. B. Gelmont and M. Shur,J. Appl. Phys. 78 (4), 2846 (1995).

    Article  CAS  Google Scholar 

  19. D.K. Gaskill, K. Doverspike, L.B. Rowland and D.L. Rode,21st Intl. Symp, on Compound Semiconductors, Vol. 141, September 18-22 1994, San Diego, (Institute of Physics, Conference Series, 1995), p. 425.

    Google Scholar 

  20. M. Asif Khan, Q. Chen, C.J. Sun, M.S. Shur and B.L. Gelmont,Appl. Phys. Lett. 67, (10), Sep. 4, 1429 (1995).

    Article  Google Scholar 

  21. U. Mishra, Private communication, June 21 (1995).

  22. M. Fanciulli, T. Lei and T.D. Moustakas,Phys. Rev. B 48, 15144 (1993).

    Article  CAS  Google Scholar 

  23. L. Eastman, presented at the Rump Session on Wide Band Gap Semiconductors, Device Research Conference, June 20 (1995).

  24. M.A. Khan, Q. Chen, C.J. Sun, M.S. Shur, M.F. Macmillan, R.P. Devaty and J. Choyke,Proc. Optoelectronic Materials,Devices, and Integrated Circuits, SPIE-WEST, presented on Feb. 7 (1995), to be published.

  25. M.A. Khan, M.S. Shur, J.N. Kuznia, J. Burm and W. Schaff,Appl. Phys. Lett. 66, (9), 1083 27 Feb. (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, M., Gelmont, B. & Asif Khan, M. Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. J. Electron. Mater. 25, 777–785 (1996). https://doi.org/10.1007/BF02666636

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666636

Key words

Navigation