Skip to main content
Log in

Correlation between dielectric properties and aqueous oxidation rate for pulverized sphalerites and zinc concentrates

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

In a previous paper the dielectric properties, including dielectric constant, dielectric loss tangent, and relaxation time, of six particulate sphalerite samples and four zinc flotation concentrates were measured using a packed bed condenser. In the current study, the same particulate samples were ground to an average size of 8.5 µm, and together with the concentrates underwent oxidation in an acidic sulfate solution, containing 100 g/dm3 H2SO4, 10 g/dm3 total Fe, and 30 g/dm3 Zn, at a controlled suspension potential of 0.55 V (Ptvs SCE) and at 90 °C (363 K). Under these experimental conditions, the Fe3+ concentration and the suspension potential had little effect on the oxidation rate. The oxidation proceeded mainly in the sulfur-forming type. The results were analyzed using a simplified kinetic expression for spherical particles with a logarithmic normal size distribution. It was found that the rate constant varied in proportion to the 0.6th power of the reciprocal of the equivalent parallel resistances for the dense substance and the packed bed. The rate constant also varied in proportion to the reciprocal of the dielectric relaxation time; however, this variation was influenced by the copper content of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Veltman and G. L. Bolton:Erzmetall., 1980, Bd. 33, S. 76–83.

    CAS  Google Scholar 

  2. F. J. Exner, J. Gerlach, and F. Pawlek:Erzmetall., 1969, Bd. 22, S. 219–27.

    CAS  Google Scholar 

  3. T. Morikawa, K. Shoji, and N. Wakamatsu: Japan Pat. 660351, 1972.

  4. K. Azuma, H. Kametani, and K. Saito:J. Min. Met. Inst. Japan, 1974, vol. 90, pp. 645–51.

    Google Scholar 

  5. R. J. Jan, M. T. Hepworth, and V. G. Fox:Metall. Trans. B, 1976, vol. 7B, pp. 353–61.

    Article  ADS  CAS  Google Scholar 

  6. S. Piao and K. Tozawa:J. Min. Met. Ins. Japan, 1985, vol. 102, pp. 795–800.

    Google Scholar 

  7. P. C. Rath, R. K. Paramguru, and P. K. Jena:Hydrometallurgy, 1981, vol. 6, pp. 219–25.

    Article  CAS  Google Scholar 

  8. Z-M. Jin, G. W. Warren, and H. Henein:Metall. Trans. B, 1984, vol. 15B, pp. 5–12.

    Article  ADS  CAS  Google Scholar 

  9. G. E. Bobeck and H. Su:Metall. Trans. B, 1985, vol. 16B, pp. 413–24.

    Article  ADS  CAS  Google Scholar 

  10. G. W. Warren, H. Henein, and Z-M. Jin:Metall. Trans. B, 1985, vol. 16B, pp. 715–24.

    Article  ADS  CAS  Google Scholar 

  11. M. Kobayashi and H. Kametani:Metall. Trans. B, 1988, vol. 19B, pp. 13–24.

    Article  ADS  CAS  Google Scholar 

  12. R. Kammel and T. Oki:Erzmetall., 1976, Bd. 29, S. 218–24.

    CAS  Google Scholar 

  13. J. Gerlach and E. Kuzeci:Erzmetall., 1984, Bd. 37, S. 261–65.

    CAS  Google Scholar 

  14. T. Nishida, T. Konada, and S. Hashimoto:Complex Sulfides (Processing of Ores, Concentrates and By-Products), A.D. Zunkel, R.S. Boorman, A.E. Morris, and R.J. Wesley, eds., TMS-AIME, 1985, pp. 239–54.

  15. H. Kametani and A. Aoki:Metall. Trans. B, 1985, vol. 16B, pp. 695–705.

    Article  ADS  CAS  Google Scholar 

  16. C. F. Böttcher:Trav. Chim. Pays-Bas, 1945, vol. 64, p. 47.

    Google Scholar 

  17. P. Debye:Polar Molecule, Chem. Catalog, New York, NY, 1929.

  18. P. B. Barton, Jr. and P. Toulmin, III:Econ. Geol., 1966, vol. 61, pp. 815–49.

    Article  CAS  Google Scholar 

  19. A. Yazawa and M. Eguchi:Shisshiki Seiren to Haisui Shori, Kyoritsu Shuppan, Tokyo, 1975, pp. 12–13.

    Google Scholar 

  20. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, Oxford, 1979, p. 370.

    Google Scholar 

  21. K. Azuma, H. Kametani, and K. Saito:J. Min. Met. Inst. Japan, 1973, vol. 89, pp. 539–44.

    Google Scholar 

  22. H. Kametani:J. Min. Met. Inst. Japan, 1983, vol. 99, pp. 117–22.

    CAS  Google Scholar 

  23. A. Aoki and H. Kametani:Research & Development in Extractive Metallurgy — 1987 (Extractive Metallurgy Symposium), May 1987, Adelaide, the AusIMM, pp. 101–08.

  24. H. Kametani, Ch. Yamauchi, and A. Aoki:Erzmetall., 1979, Bd. 32, S. 277–85.

    CAS  Google Scholar 

  25. S. Glasstone, K. J. Laidler, and H. Eyring:The Theory of Rate Processes, McGraw-Hill, New York, NY, 1941, p. 547.

    Google Scholar 

  26. S. Glasstone, K. J. Laidler, and H. Eyring:The Theory of Rate Processes, McGraw-Hill, New York, NY, 1941, p. 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with National Research Institute for Metals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kametani, H., Kobayashi, M. Correlation between dielectric properties and aqueous oxidation rate for pulverized sphalerites and zinc concentrates. Metall Trans B 19, 25–36 (1988). https://doi.org/10.1007/BF02666487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666487

Keywords

Navigation