Skip to main content
Log in

Thermodynamics of the zinc-sulfur dioxide-water system

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The known thermodynamic data for the aqueous zinc and sulfur dioxide systems have been gathered, evaluated, and presented in the form of potential -pH diagrams. Empirical relationships describing the entropy of ions at 298 K combined with the extrapolation method of Criss and Cobble[6] have been used in the absence of high-temperature free-energy data. The free energy of formation of zinc sulfite (ZnSO3 · 2.5H2O) has been experimentally determined to be −1256 ± 4 kJ mol−1 and has been incorporated into the diagrams along with the various metastable polythionate species of sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(i):

activity of speciesi

C o p :

standard molal heat capacity

C o p :

standard mean molal heat capacity

Eh :

potential of electrode referred to SHE

F:

the Faraday

ΔG o p :

standard free energy of formation of species

ΔG o :

standard free energy change of reaction

K :

equilibrium constant or solubility product

n :

number of electrons involved in reaction

R:

gas constant

S o 298 :

molal entropy of species in standard state at 298.15 K

SHE:

standard hydrogen electrode

T :

absolute temperature

References

  1. M. Pourbaix:Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon, Oxford, United Kingdom, 1966.

    Google Scholar 

  2. J.D. Esdaile and G.W. Walters: CSIRO Australia, Report R17, 1969.

  3. R.B. Sudderth, J.B. Clitheroe, and G.A. Kordosky: General Mills Chemicals, Inc., AIME Meeting, Denver, CO, Feb. 1978.

    Google Scholar 

  4. Gmelins Handbuch der Anorganischen Chemie, Zink-erg, Verlag Chemie - GMBH, 1956, vol. 32, p. 935.

  5. F.T. Heuston and C.R. Tichborne:Brt. Med. J., 1890, p. 1063.

  6. C.M. Criss and J.W. Cobble:J. Am. Chem. Soc, 1964, vol. 86, p. 5385.

    Article  Google Scholar 

  7. P.P. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Cumey, and R.L. Nuttal:J. Phys. Chem. Ref. Data, The ACS and The NBS, Washington, DC, 1982, vol. 11 (2).

    Google Scholar 

  8. G.B. Naumov, B.N. Ryzhenko, and I.L. Khodakovsky:Handbook of Thermochemical Data, United States Dept. of Commerce, Washington, DC, 1974.

  9. D.M. Larsen: Ph.D. Thesis, The University of Sydney, Sydney, Australia, 1985.

    Google Scholar 

  10. W.M. Latimer:J. Am. Chem. Soc, 1951, vol. 73, p. 1480.

    Article  Google Scholar 

  11. J.W. Cobble:J. Chem. Phys., 1953, vol. 21, p. 1446.

    Article  Google Scholar 

  12. A.M. Couture and K.J. Laidler:Can. J. Chem., 1957, vol. 35, p. 202.

    Article  Google Scholar 

  13. P.B. Linkson, B.D. Phillips, and C.D. Rowles:Minerals Sci. Eng., 1979, vol. 11, p. 65.

    Google Scholar 

  14. O.J. Kwok and R.G. Robins:Int. Symp. on Hydrometallurgy, D.J.I. Evans and R.S. Shoemaker, eds., AIME, New York, NY, 1973, pp. 1033–80.

    Google Scholar 

  15. L.C. Schroeter:Sulphur Dioxide, Pergamon, London, 1966.

    Google Scholar 

  16. H. Debus:Trans. J. Chem. Soc, 1888, vol. 53, pp. 278–357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, D.M., Linkson, P.B. Thermodynamics of the zinc-sulfur dioxide-water system. Metall Trans B 24, 409–417 (1993). https://doi.org/10.1007/BF02666423

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666423

Keywords

Navigation