Summary
For a simple class of Lagrangians and variational integrators, derived by time discretization of the action functional, we establish (i) the Γ-convergence of the discrete action sum to the action functional; (ii) the relation between Γ-convergence and weak* convergence of the discrete trajectories in {itW{su1,℞}}({ofR};{ofr{sun}; and (iii) the relation between Γ-convergence and the convergence of the Fourier transform of the discrete trajectories as measured in the flat norm.
This is a preview of subscription content, access via your institution.
References
Belytschko, T., and R. Mullen [1976], Mesh partitions of explicit-implicit time integrators. In K.-J. Bathe, J. T. Oden, and W. Wunderlich, editors,Formulations and Computational Algorithms in Finite Element Analysis, 673–690. MIT Press, Cambridge, Mass.
Belytschko, T. [1981], Partitioned and adaptive algorithms for explicit time integration. In W. Wunderlich, E. Stein, and K.-J. Bathe, editors,Nonlinear Finite Element Analysis in Structural Mechanics, 572–584. Springer-Verlag, New York.
DalMaso, G. [1993], Anintroduction to Γ-convergence. Birkhäuser, Boston-Basel-Berlin.
DeGiorgi, E., and T. Franzoni [1975], Su un tipo di convergenza variazionale,Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),58, 841–850.
Hairer, E., and C. Lubich [1997], The life-span of backward error analysis for numerical integrators,Numerische Mathematik,76, 441–462.
Hughes, T. J. R. [1987],The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, N.J.
Kane, C, J. E. Marsden, and M. Ortiz [1999], Symplectic energy-momentum integrators,J. Math.Phys.,40, 3353–3371.
Maggi, F., and M. Morini [2003], A Γ-convergence result for variational integrators of quadratic Lagrangians, Preprint 03-CNA-008, Carnegie Mellon University.
Marsden, J. E., G. W. Patrick, and S. Shkoller [1998], Multisymplectic geometry, variational integrators and nonlinear PDEs,Commun. Math. Phys.,199, 351–395.
Marsden, J. E. and M. West [2001], Discrete variational mechanics and variational integrators,Acta Numerica,10, 357–514.
Moser, J., and A. P. Veselov [1991], Discrete versions of some classical integrable systems and factorization of matrix polynomials,Commun. Math. Phys.,139, 217–243.
Reich, S. [1999], Backward error analysis for numerical integrators,SIAM J. Num. Anal.,36, 1549–1570.
Veselov, A. P. [1988], Integrable discrete-time systems and difference operators,Fund. Anal. & Appl.,22, 83–93.
Wendlandt, J. M., and J. E. Marsden [1997], Mechanical integrators derived from a discrete variational principle,Physica D,106, 223–246.
Author information
Authors and Affiliations
Additional information
Communicated by J. E. Marsden and R. Kohn
Rights and permissions
About this article
Cite this article
Müller, S., Ortiz, M. On the Γ-convergence of discrete dynamics and variational integrators. J Nonlinear Sci 14, 279–296 (2004). https://doi.org/10.1007/BF02666023
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02666023
Key words
- discrete dynamics
- variational integrators
- Γ-convergence
- spectral convergence
- flat norm