Skip to main content
Log in

Electron microscopy and energy loss study of low temperature plasma deposited oxide on a CZ grown Si substrate

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) and computer-controlled parallel electron energy loss spectroscopy (PEELS) are used to obtain the structure of and compositional profile across a thin oxide film deposited by remote plasma enhanced chemical vapor deposition at 300°C. The film, believed to be stoichio-metrically correct SiO2 as determined by Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS), was found to be oxygen rich with a composition non-uniformity across it. The existence of an abundance of oxygen was supported by capacitance-voltage measurements and etch rate studies. The non-uniformity was observed in TEM images. These results show what a powerful characterization technique computer-controlled PEELS can be. In addition, this is the first time that PEELS profiling was used to help interpret TEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Gorczyca and B. Gorowitz,VLSI Electronics 6, eds. N. Einspunch and G.B. Larrabee (New York: Academic Press, 1983).

    Google Scholar 

  2. A.C. Adams,VLSI Technology, ed. S.M. Sze (New York: McGraw-Hill, 1983).

    Google Scholar 

  3. A. Bourret and J. Desseaux,Philos. Mag. 39A, 405 (1979).

    Google Scholar 

  4. A. Bourret and J. Desseaux,Philos. Mag. 39A, 419 (1979).

    Google Scholar 

  5. A. Bourret, J. Desseaux and A. Renault,Philos. Mag. 45A, 1 (1982).

    Google Scholar 

  6. J.M. Gibson, M.L. McDonald and F.C. Unterwald,Phys. Rev. Lett. 60, 1158(1988).

    Article  CAS  Google Scholar 

  7. A. Ourmazd, D.W. Taylor and T. Cunningham,Phys. Rev. Lett. 62, 933 (1989).

    Article  CAS  Google Scholar 

  8. A.K. Petford-Long, G.R. Booker and M. Hockly,UI-tramicroscopy 31, 385 (1989).

    CAS  Google Scholar 

  9. C. Blaauw,J. Electrochem. Soc. 131, 1114 (1984).

    Article  CAS  Google Scholar 

  10. J.M. Gibson and D.W. DongJ. Electrochem. Soc. 127, 2728 (1980).

    Article  Google Scholar 

  11. O.L. Krivanek, A. Howie and P. Gaskell,Nature 262, 454 (1974).

    Article  Google Scholar 

  12. D. J. Smith, W.M. Stobbs and W.O. Saxton,Philos. Mag. B 43, 907 (1981).

    Article  CAS  Google Scholar 

  13. F.M. Ross and W.M. Stobbs,Philos. Mag A 63, 37 (1991).

    Article  Google Scholar 

  14. H. Cerva, T. Hillerman, H. Oppolzer and R.V. Criegern,Inst. Phys. Conference 87, 445 (1987).

    CAS  Google Scholar 

  15. M.J. Kim and R.W. CarpenterJ. Mater. Res. 5, 347 (1990).

    CAS  Google Scholar 

  16. M.M. Disko, M.J. Luton and M. Shuman,Ultramicroscopy 37, 202 (1991).

    Article  CAS  Google Scholar 

  17. G.L. Waytena, J. Hren, P. Rez and J.K. Weiss, submitted toJ. Appl. Phys.

  18. W. Kern,Semiconductor International 5, 94 (1989).

    Google Scholar 

  19. S.V. Hattangady, R.A. Rudder, M.J. Mantini, G.G. Fountain, J.B. Posthill and R.J. Marcunas,J. Appl. Phys 68, 1233(1990).

    Article  CAS  Google Scholar 

  20. R.A. Rudder, G.G. Fountain and R. J. Marluwas,J. Appl. Phys. 60, 3519 (1986).

    Article  CAS  Google Scholar 

  21. J.C. Bravman and R. Sinclair,J. Electron Microscope Techn. 1, 53 (1984).

    Article  CAS  Google Scholar 

  22. J.K. Weiss, R.W. Carpenter and A.A. Higgs,Ultramicroscopy 36, 1 (1991).

    Article  Google Scholar 

  23. R.F. Egerton,Electron Energy Loss Spectoscopy in the Electron Microscope (New York: Plenum Press, 1986), p. 130.

    Google Scholar 

  24. G.L. Waytena, 1992 Ph.D. Thesis North Carolina State Uniersity, Raleigh, North Carolina.

    Google Scholar 

  25. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley and M.J. Whelan,Electron Microscopy of Thin Crystals (New York: Krieger, 1977).

    Google Scholar 

  26. L.C. Kimberling, H. J. Leamy and J.R. Patel,Appl. Phys. Lett. 30, 217 (1977).

    Article  Google Scholar 

  27. J.H. Mazur and J. Washburn,Electron Microscopy of Materials (Pittsburgh, PA: Materials Research Society, 1984), p. 105.

    Google Scholar 

  28. W.J. Patrick, S.M. Hu and W.A. Westdrop,J. Appl. Phys. 50, 1399 (1979).

    Article  CAS  Google Scholar 

  29. J.M. Cowley,Diffraction Physics (New York: North Holland Publishers, 1974).

    Google Scholar 

  30. I. Montero, L. Galan, E. DeLaCal, J.M. Albella and J.C. Pivin.,Thin Solid Films, 193, 325 (1990).

    Article  Google Scholar 

  31. E.H. Niccolean and J.R. Brews,MOS Physics and Technology (New York: John Wiley and Sons, 1982).

    Google Scholar 

  32. G.L. Waytena and G.G. Fountain, article in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waytena, G.L. Electron microscopy and energy loss study of low temperature plasma deposited oxide on a CZ grown Si substrate. J. Electron. Mater. 22, 93–97 (1993). https://doi.org/10.1007/BF02665729

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665729

Key words

Navigation