Skip to main content
Log in

Research opportunities in polycrystalline compound solar cells

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline photovoltaic (PV) materials show substantial promise for achieving the U.S. Department of Energy PV costs and performance goals. Cadmium telluride (CdTe) and CuInSe2 (CIS) both have recently demonstrated device efficiencies in the 15 percent range with promise of achieving 20 percent efficiencies. Large area thin film CIS and CdTe modules in the 0.4 to 0.7 m2 size have also been fabricated with aperture efficiencies approaching ten percent. In spite of these results, polycrystalline thin film materials are relatively unexplored. Fundamental research opportunities in materials for thin film solar cells can be categorized under three major headings, from the most general to the most specific: areas with long-range potentialities, areas with a larger exploratory content, and areas with specific need. Each of these issues can play a vital role in the development of improved solar cells. The discussion of research opportunities in this paper starts with the more general opportunities and works its way to the most specific ones: (i) updating the basic investigation of defect properties and compensation in Group II-VI and related materials; exploring the basic materials science of the growth process for synthesis from layers of the elements, and exploring the potentials of bandgap engineering; (ii) search for new materials, interactions between defects and grain boundaries in polycrystalline materials, and exploration of the p-i-n structure for solar cells in a more general way; and (iii) doping of and contacts to p-CdTe, junction transport and effects of heat treatments on CdTe and CuInSe2, and development of Group II-VI ternaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. Mitchell,Ann. Rev. Mater. Sci. 12, 401 (1982).

    Article  CAS  Google Scholar 

  2. K.W. Mitchell, C. Eberspacher, J.H. Ermer, K.L. Pauls and D.N. Pier,IEEE Trans. Electron Devices, 37, 410 (1990).

    Article  CAS  Google Scholar 

  3. J.R. Tuttle, R. Noufi and R.G. Dhere, see Ref. 2, 1494 (1987).

  4. K.W. Mitchell,Evaluation of the CdS/CdTe Heterojunction Solar Cell (New York: Garland Publishing Co., 1979).

    Google Scholar 

  5. K.L. Eskena and K.W. Mitchell,Proc. 18th IEEE PV Spec. Conf., Las Vegas, NV (New York: IEEE, 1985), pp. 720–725.

    Google Scholar 

  6. W.R. Runyan,Silicon Semiconductor Technology (New York: McGraw-Hill Book Co., 1965).

    Google Scholar 

  7. K.W. Mitchell and H.I. Liu,Proc. 20th IEEE PV Specialists Conf. (New York: IEEE, 1988), pp. 1461–1468.

    Google Scholar 

  8. K.W. Mitchell,Proc. 9th European PV Solar Energy Conf., Freiberg (1989).

  9. W. Chesarek et al.,Proc. 19th IEEE PV Specialists Conf. (New York: IEEE, 1987), pp. 791–794.

    Google Scholar 

  10. W. Chesarek, A. Mason, K. Mitchell and L. Fabrick,Solar Cells, 24, 263(1988).

    Article  CAS  Google Scholar 

  11. D.Willett,D.Aldrich,W. Chesarek and K. Mitchell,Proc. 10th European PV Solar Energy Conf., Lisbon (1991), to be published.

  12. D. deNobel,Philips Res. Repts. 14, 361 (1959).

    CAS  Google Scholar 

  13. G. Mandel,Phys. Rev. 134A, 1073 (1964).

    Article  Google Scholar 

  14. R.L. Selim and F.A. Kroger,J. Electrochem. Soc. 124, 401 (1977).

    Article  CAS  Google Scholar 

  15. J.A. van Vechten,Handbook of Semiconductors, ed. S. P. Keller (Amsterdam, the Netherlands: North Holland Amsterdam, 1980), p. 3.

    Google Scholar 

  16. H. Reiss,J. Chem. Phys. 21, 1209 (1952).

    Article  Google Scholar 

  17. C.G. Van de Walle et al,J. Cryst. Growth 117, 704 (1992).

    Article  Google Scholar 

  18. W. Walukiewicz,J. Vac. Sci. Technol. B6, 1257 (1988);Phys. Rev. B37, 4760 (1988).

    Google Scholar 

  19. D. Chadi and K. Chang,Phys. Rev. B39, 10,063 (1989).

    Google Scholar 

  20. A. Knowles, H. Oumous, M. Carter and R. Hill,Semicond. Sci. Technol. 3, 1143 (1988).

    Article  CAS  Google Scholar 

  21. H.Oumous, A. Knowles, M.H. Badawi, M.J. Carter and R. Hill,Proc. 21st IEEE Photovolt. Spec. Conf. (New York: IEEE, 1990), p. 447.

    Google Scholar 

  22. M.T. Bhatti, E.P. Groarke, R.W. Miles, J. J. Carter and R. Hill,Proc. 22nd IEEE Photovolt. Spec. Conf. (New York: IEEE, 1991), p. 1141.

    Google Scholar 

  23. T. Hama et al.,Solar Energy Mater. 23, 380 (1991).

    Article  CAS  Google Scholar 

  24. F. Capasso, ed.,Physics of Quantum Electron Devices (Berlin and Heidelberg, Germany: Springer Verlag, 1990).

    Google Scholar 

  25. F. Capasso and G. Margaritondo, eds.,Heterojunction Band Discontinuities: Physics and Device Applications (New York: Elsevier, 1987).

    Google Scholar 

  26. K.W. Mitchell, C. Eberspacher, J. Ermer and D. Pier,Proc. 20th IEEE Photovolt. Spec. Conf. (New York: IEEE, 1988), p. 1384.

    Google Scholar 

  27. K. Mitchell, R. Potter, J. Ermer, R. Wieting and C. Eberspacher,Proc. 19th IEEE Photovolt. Spec. Conf. (New York: IEEE, 1987), p. 13.

    Google Scholar 

  28. K. Mitchell, R. Rifai and L. Fabick,Proc. 19th IEEE Photovolt. Spec. Conf. (New York: IEEE, 1987), p. 177.

    Google Scholar 

  29. D.L. Morel,Solar Cells 45, 157 (1988).

    Article  Google Scholar 

  30. D.L. Morel, K. Blaker, W. Bottenberg, L. Fabrick and B. Felder,8th EC Photovolt. Solar Energy Conf. (1988).

  31. K.W. Mitchell, 9th Annu. Rev. Meet. SERI/CP-213-3495, Lakewood, CO, 15 (1989).

  32. B.E. McCandless, R.W. Birkmire, W.A. Buchanan, J.E. Phillips and R.E. Rocheleau,20th IEEE Photovolt. Spec. Conf. (New York: IEEE, 1988), p. 381.

    Book  Google Scholar 

  33. J. D. Meakin, R.W. Birkmire, L.C. DiNetta, P.G. Lassell and J.E. Phillips,Solar Cells 16, 447 (1986).

    Article  CAS  Google Scholar 

  34. E. Bucher,Appl. Phys. 17, 1 (1978).

    Article  CAS  Google Scholar 

  35. S. Wagner and P. M. Bridenbaugh,J. Cryst. Growth 39, 151(1977).

    Article  CAS  Google Scholar 

  36. G. Smested, A.D. Silva, H. Tributsch, S. Fletcher, M. Kunst, N. Meziani and M. Birkholz,Solar Energy Mater., 18, 299(1989).

    Article  Google Scholar 

  37. A. Catalano, J.V. Masi and N.C. Wyeth,Proc. 2nd EC Photovolt. Solar Energy Conference (Riedel, Holland, 1979), p. 440.

  38. M.S. Casey, A.L. Fahrenbruch and R.H. Bube,J. Appl. Phys. 61, 2941 (1987).

    Article  CAS  Google Scholar 

  39. C. Clemen and E. Bucher,Proc. 13th IEEE Photovolt. Spec. Conf. (New York: IEEE, 1978), p. 1255.

    Google Scholar 

  40. M.J. Sailor, F. L. Klavetter, R.H. Grubbs and N.S. Lewis,Nature 346,155 (1990).

    Article  CAS  Google Scholar 

  41. M.J. Cohen and J.S. Harris, Jr.,Tech. Dig. Int’l. Electron Devices Meet. (1978), p. 247.

  42. T.L. Chu, C. Ferekides, C.Q. Qu, J. Britt and C. Wang,J. Appl. Phys. 70, 7608 (1991).

    Article  CAS  Google Scholar 

  43. T. Nakazawa, K. Takamizawa, and K. Ito,Appl. Phys. Lett. 50, 279 (1987).

    Article  CAS  Google Scholar 

  44. H.J. Leamu, G.E. Pike, and C.H.J. Seager, “Grain Boundaries in Semiconductors,”Proc. Mat. Res. Soc. Meet., Boston (Amsterdam, the Netherlands: N. Holland Publ., 1981).

    Google Scholar 

  45. T.P. Thorpe, A.L. Fahrenbruch and R.H. Bube,J. Appl. Phys. 60, 3611 (1986).

    Article  Google Scholar 

  46. P.V. Meyers, B. Ackerman and J.F. Jordan,IEEE Trans. Electron Dev. 37, 434 (1990).

    Article  Google Scholar 

  47. S.P. Albright, B. Ackerman and J.F. Jordan,IEEE Trans. Electron Dev. 37, 434 (1990).

    Article  CAS  Google Scholar 

  48. T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt and C. Wang,Proc. 22nd IEEE Photovolt. Spec. Conf. (New York: IEEE, 1991), p. 952.

    Google Scholar 

  49. T. Chu, S.S. Chu, F. Firszt, H.A. Naseem and R. Stawski,J. Appl. Phys., 58, 1349 (1986).

    Article  Google Scholar 

  50. P. Sharps, A. L. Fahrenbruch, A. Lopez-Otero and R.H. Bube,J. Appl. Phys. 68, 6406 (1990).

    Article  CAS  Google Scholar 

  51. D. Kim, A.L. Fahrenbruch, A. Lopez-Otero and R.H. Bube,Proc. Mat. Res. Soc., San Francisco (Pittsburgh, PA: Materials Research Society, 1992).

    Google Scholar 

  52. R.L. Harper, Jr., S. Hwang, N.C. Giles, J.F. Schetzina, D.I. Dreifus, T.H. Myers,Appl. Phys. Lett. 54, 170 (1989).

    Article  CAS  Google Scholar 

  53. J. Qiu, J.M. DePuydt, H. Cheng and M.A. Hasse,Appl. Phys. Lett. 59, 2992 (1991).

    Article  CAS  Google Scholar 

  54. N. Romeo, A. Bosio, V. Canevari, C. Spaggiari and L. Zini,Solar Cells 26, 189 (1989).

    Article  CAS  Google Scholar 

  55. N.R. Taskar, V. Natagarajan, I.B. Bhat and S.K. Ghandhi,J. Cryst. Growth 86, 228 (1988).

    Article  CAS  Google Scholar 

  56. C. Cohen-Solal,J. Cryst. Growth 72, 512 (1985).

    Article  CAS  Google Scholar 

  57. B.M. Basol,Proc. 21st IEEE Photovolt. Spec. Conf. 588 (New York: IEEE, 1990).

    Book  Google Scholar 

  58. R.W. Birkmire, B.E. McCandless and J.E. Phillips,Proc. SERI Polycryst. Thin Film Program Meeting 77 (1989).

  59. S.A. Ringel, A.W. Smith, M.H. MacDougal and A. Rohatgi,J. Appl. Phys. 70, 881 (1991).

    Article  CAS  Google Scholar 

  60. D. Cahen and R. Noun,Solar Cells 30, 53 (1991).

    Article  CAS  Google Scholar 

  61. I. Clemminck et al,Proc. 22nd IEEE Photovolt. Spec. Conf. 1114 (New York: IEEE, 1991).

    Google Scholar 

  62. A.L. Fahrenbruch,Solar Cells 31, 399 (1987).

    Article  Google Scholar 

  63. T.C. Anthony, A.L. Fahrenbruch and R.H. Bube,J. Electron. Mater. 11, 89 (1982).

    CAS  Google Scholar 

  64. C.-T. Lee and R.H. Bube,J. Appl. Phys. 54, 7041 (1983); 58, 880 (1985).

    Article  CAS  Google Scholar 

  65. E. Janik and R. Triboulet,J. Phys. D 16. 2333 (1983).

    Article  CAS  Google Scholar 

  66. T.L. Chu et al.,Proc. 20th IEEE Photovolt. Spec. Conf. 1422 (New York: IEEE, 1988).

    Google Scholar 

  67. A. Mondai, R.W. Birkmire and B.E. McCandless,Proc. 20th IEEE Photovolt. Spec. Conf. 1126 (New York: IEEE, 1991).

    Google Scholar 

  68. R. Singh, F. Radpour, P. Chou, Q. Nguyen, S.P. Joshi, H.S. Ullal, R.J. Matson and S. Asher,J. Vac. Sci. Technol. A5, 1819 (1987).

    Google Scholar 

  69. C. An, H. Tews, and G. Cohen-Solal,J. Cryst. Growth 59, 289 (1982).

    Article  CAS  Google Scholar 

  70. A. Katz et al.,Appl. Phys. Lett. 54, 2306 (1989).

    Article  CAS  Google Scholar 

  71. R.P.S. Thakur, R. Singh, A.J. Nelson and A. B. Swartzlander,J. Appl. Phys. 70, 3857 (1991).

    Article  CAS  Google Scholar 

  72. M.J. Saylor, F.L. Klavetter, R.H. Grubbs and N.S. Lewis,Nature 346, 155 (1990).

    Article  Google Scholar 

  73. S.R. Das, J.G. Cook and D.J. Lockwood,Proc. Surface Chemistry and Beam-Solid Interactions Symp., eds. H.A. Atwater et al., 63 (Pittsburgh, PA: Materials Research Society, 1991). They find a metastable value of x = 0.47 for Pb1−x Cdx Te.

    Google Scholar 

  74. A.A. Zahab, M. Abd-Lefdil and M. Cadene,Proc. 9th EC Photovolt. Solar Energy Conf. 508 (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bube, R.H., Mitchell, K.W. Research opportunities in polycrystalline compound solar cells. J. Electron. Mater. 22, 17–25 (1993). https://doi.org/10.1007/BF02665720

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665720

Key words

Navigation