Skip to main content
Log in

An investigation of molecular beam epitaxy “in-situ” grown Ag/GaAs schottky diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrical properties of molecular beam epitaxy “in-situ” grown Ag on (001) GaAs Schottky diodes were investigated. X-ray rocking curves show a (111) main peak for “in-situ” Ag grown at low temperature. During annealing, the main peak of Ag rotates from (111) to (200) to closely match that of the underlying GaAs lattice. The barrier height, 0.991 eV (determined by C-V measurement), decreases whereas doping concentration increases with increasing annealing temperature. Interdiffusion and the formation of some compound phases were also observed during annealing. A simple model, in which Ga dissociates from GaAs resulting in an increase in uncompensated ions at the metal-semiconductor interface, is proposed to explain the observation that carrier concentrations increase after annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Y. Cho and P. D. Dernier, J. Appl. Phys.49, 3328 (1978).

    Article  CAS  Google Scholar 

  2. J. Massies and N. T. Linh, J. Cryst. Growth56, 25 (1982).

    Article  CAS  Google Scholar 

  3. G. A. Prinz and J. J. Krebs, Appl. Phys. Lett.39, 397 (1981).

    Article  CAS  Google Scholar 

  4. E. R. Ludeke, L. L. Chang and D. E. Eastman, J. Vac. Sci. Technol.21, 599 (1982).

    Article  CAS  Google Scholar 

  5. J. R. Waldrop, J. Vac. Sci. Technol.B2, 445 (1984).

    Google Scholar 

  6. R. E. Viturro, J. L. Shaw, C. Mailhiot, L. J. Brillson and N. Tache, Appl. Phys. Lett.52, 2052 (1988).

    Article  CAS  Google Scholar 

  7. R. E. Viturro, C. Mailhiot, J. L. Shaw and L. J. Brillson, J. Vac. Sci. Technol. A7, 855 (1989).

    Article  CAS  Google Scholar 

  8. S. Chang, I. M. Vitomiro, L. J. Brillson, D. F. Rioux, P. D. Kirchner, G. D. Pettit and J. M. Woodall, J. Vac. Sci. Technol.B9, 2129 (1991).

    Google Scholar 

  9. M. Hong, H. S. Chen, J. R. Kwo, A. R. Kortan, J. P. Mannaerts, B. E. Weir and L. C. Feldman, J. Cryst. Growth,111, 984 (1991).

    Article  CAS  Google Scholar 

  10. G. Hasnain, K. Tai, J. D. Wynn, Y. H. Wang, R. J. Fischer, M. Hong, B. E. Weir, G. J. Zydzik, J. P. Mannaerts, J. Gamelin and A. Y. Cho, Electron. Lett.26, 1590 (1990).

    Article  Google Scholar 

  11. S. M. Sze, Physics of Semiconductor Device, Wiley (1981).

  12. C. W. Wilmsen, ed., Physics and Chemistry of III-V Compound Semiconductor Interface (1985).

  13. G. Lubberts, J. Appl. Phys.47, 365 (1976).

    Article  CAS  Google Scholar 

  14. G. Y. Robinson, J. Vac. Sci. Technol.13, 884 (1976).

    Article  CAS  Google Scholar 

  15. F. A. Padovani and R. Stratton, Solid-State Electron.13, 695 (1966).

    Article  Google Scholar 

  16. C. R. Crowell and V. L. Rideout, Solid-State Electron.12, 89 (1969).

    Article  Google Scholar 

  17. J. L. Freeouf and J. M. Woodall, Appl. Phys. Lett.39, 727 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.H., Houng, M.P., Chen, F.H. et al. An investigation of molecular beam epitaxy “in-situ” grown Ag/GaAs schottky diodes. J. Electron. Mater. 21, 911–915 (1992). https://doi.org/10.1007/BF02665548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665548

Key words

Navigation