Skip to main content
Log in

Effects of electrode geometry and polarity on the occurrence of negative peaks in optical transient current spectroscopy applied to semi-insulating gallium arsenide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optical transient current spectroscopy (OTCS) involves observing the transient decay of “photoconductivity” and is of interest as a means of characterizing semi-insulating GaAs wafers. We report experimental results which show that the OTCS spectrum and, in particular, the occurrence of negative peaks is strongly dependent on the shape, size and electrode configuration of the specimen, as well as on the magnitude of the applied voltage and (with asymmetric electrodes) its polarity. A negative peak sometimes changes to a current oscillation with increasing voltage, probably indicating field enhanced trapping. Negative peaks may be observed with sandwich structures with a transparent electrode covering the illuminated surface. This shows that a recent proposal that surface states are involved is at least not always correct. It is suggested that several mechanisms can give negative peaks, and probably more than one has done so under the various experimental conditions which have been used. The present work shows that any practical application of OTCS for ingot qualification will be dependent on standardization of specimen geometry, electrodes and operating parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Martin and D. Bois, Proc. Electrochem. Soc., Semi-conductor Characterization Techniques, Edtr. P. A. Barnes,78, 32 (1978). The acronym PITS (photoinduced transient spectroscopy) is also used but OTCS, has the advantage of indicating that a current transient is involved. PICTS (photoinduced current transient spectroscopy) (2) is better in this respect. The technique known as optical DLTS (3) does not represent OTCS but a capacitance DLTS technique in which a light rather than a voltage pulse is used.

    Google Scholar 

  2. J. Rhee and P. K. Bhattacharya, J. Appl. Phys.53, 4247 (1982).

    Article  CAS  Google Scholar 

  3. S. K. Brierly, J. Appl. Phys.61, 567 (1987).

    Article  Google Scholar 

  4. D. V. Lang, J. Appl. Phys.45, 3023, (1974).

    Article  CAS  Google Scholar 

  5. C. Hurtes, M. Boulou, A. Mitonneau and D. Bois, Appl. Phys. Lett.32, 821 (1978).

    Article  CAS  Google Scholar 

  6. M. Ogawa, T. Kamiya and H. Yanai, Inst. Phys. Conf. Ser., GaAs and related compounds63, 571 (1981).

    Google Scholar 

  7. L. Young, W. C. Tang, S. Dindo and K. S. Lowe, J. Electrochem. Soc.133, 609 (1986).

    Article  CAS  Google Scholar 

  8. S. R. Blight, A. D. Page, P. H. Ladbrooke and H. Thomas, Jpn. J. Appl. Phys.26, 1388 (1987).

    Article  CAS  Google Scholar 

  9. S. R. Blight and H. Thomas, J. Appl. Phys.65, 215, 1989.

    Article  CAS  Google Scholar 

  10. R. E. Kremer, M. C. Arikan, J. C. Abele and J. S. Blakemore, J. Appl. Phys.62, 2424 (1987).

    Article  CAS  Google Scholar 

  11. J. C. Abele, R. E. Kremer and J. S. Blakemore, J. Appl. Phys.62, 2432 (1987).

    Article  CAS  Google Scholar 

  12. Z. Fang, L. Shan, T. E. Schlesinger and A. G. Milnes, Solid-State Electron.32, 405 (1989).

    Article  CAS  Google Scholar 

  13. C. C. Tin, C. K. Teh and F. L. Weichman, J. Appl. Phys.62, 2329 (1989).

    Article  Google Scholar 

  14. J. C. Bourgoin, H. J. Von Bardeleben and D. Stievenard, J. Appl. Phys.64, R 65 (1988).

    Article  CAS  Google Scholar 

  15. O. Yoshie and M. Kamihara, Jpn. J. Appl. Phys.24, 431 (1985).

    Article  CAS  Google Scholar 

  16. M. Kaminska, J. Parsey, J. Lagowski and H. Gatos, Appl. Phys. Lett.41, 989 (1982).

    Article  CAS  Google Scholar 

  17. C. Backhouse and L. Young, J. Electrochem. Soc.138, 3759 (1991).

    Article  CAS  Google Scholar 

  18. A. B. Torrens and L. Young, Can. J. Phys.50, 1098 (1972).

    CAS  Google Scholar 

  19. T. K. Battacharya, Jpn. J. Appl. Phys.9, 1268 (1970).

    Article  Google Scholar 

  20. H. K. Sacks and A. G. Milnes, Int. J. Electron.28, 565 (1970).

    Article  CAS  Google Scholar 

  21. Y. Tokumaru, Jpn. J. Appl. Phys.8, 95 (1970).

    Article  Google Scholar 

  22. G. N. Maracas, D. A. Johnson and H. Goronkin, Appl. Phys. Lett.46, 306 (1985).

    Article  Google Scholar 

  23. F. Wager and A. McCamant, IEEE Trans. Electron Dev.34, 1001 (1987).

    Google Scholar 

  24. Z. M. Li, S. P. McAlister, W. G. McMullan and C. M. Hurd, J. Appl. Phys.67, 7368 (1990).

    Article  CAS  Google Scholar 

  25. Z. M. Li, D. J. Day, S. P. McAlister and C. M. Hurd, IEEE Electron Device Lett.11, 342 (1990).

    Article  CAS  Google Scholar 

  26. G. Maracas, W. Porod, D. Johnson and D. Ferry, Physica134B, 276 (1985).

    Google Scholar 

  27. D. Hui, Ph.D. Thesis, Univ. of B.C., Vancouver, Canada (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, D., Kato, H., Backhouse, C. et al. Effects of electrode geometry and polarity on the occurrence of negative peaks in optical transient current spectroscopy applied to semi-insulating gallium arsenide. J. Electron. Mater. 21, 901–909 (1992). https://doi.org/10.1007/BF02665547

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665547

Key words

Navigation