Skip to main content
Log in

Electrical characterisation of Cu-Diffusedn-GaAs epitaxial layers using optical deep level transient spectroscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Undopedn --GaAs epitaxial layers were grown by OMVPE onn + (1 × 1018 cm3) and semi-insulating (SI) GaAs substrates. The as-grown epitaxial layers grown onn + substrates contained several deep level defects whereas those grown on SI substrates were, apart from the EL2, virtually “defect free”. Upon Cu diffusion, deep levels which may reduce hole and electron diffusion lengths and lifetimes, were formed. Optical deep level transient spectrocopy (ODLTS) has been used to identify such levels atE v + 0,41 eV andE c-0,31 eV respectively. The EO1 (EL2) trap concentration reduced after Cu had been diffused into the epitaxial layers. The magnitude of this reduction was approximately equal to the concentration of the trap found atE c - 0,31 eV which suggests that the two may be related. Activation energies and capture cross-section values are presented for the deep levels detected in these epitaxial layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Lang, J. Appl. Phys.45, 3014 (1974).

    Article  CAS  Google Scholar 

  2. Lang, D. V., in Topics of Applied Physics, ed. P. Braunlich (Springer-Verlag. Berlin) Vol. 37, 93.

  3. Miller, G. L., Lang, D. V. and Kimerling, L. C. in “Annual Review of Materials Science,” ed. R. A. Huggins Vol. 7, p. 377.

  4. D. L. Scharfetter, Solid State Electron.8, 299 (1965).

    Article  Google Scholar 

  5. Mitanneau, A., Martin, G. M. and Mircea, A., “Investigation of minoroty deep levels by a new optical method,” Inst. Phys. Conf. Ser. No. 33(a), Edinburgh, 1977, pp. 73-83.

  6. Sumitomo Electric Industries Ltd, Japan.

  7. Thomas Swan and Co, Cambridge, UK.

  8. S. Iida and K. Ito, J. Electrochem. Soc.118, 768 (1971).

    Article  Google Scholar 

  9. H. Morkoc and L. F. Eastman, J. Electrochem. Soc.128, 906 (1976).

    Article  Google Scholar 

  10. A. P. Botha and E. Relling, Mat. Res. Soc. Symp. Proc.54, 421 (1986).

    CAS  Google Scholar 

  11. S. M. Sze, “Physics of Semiconductor devices,” (Wiley, U.S.A., 1969).

    Google Scholar 

  12. F. D. Auret, M. Nel and A. W. R. Leitch, J. Cryst. Growth89, 308 (1988).

    Article  CAS  Google Scholar 

  13. D. V. Lang and R. A. Logan, J. Electron. Mater.4, 1053 (1975).

    CAS  Google Scholar 

  14. D. L. Partin, J. W. Chen, A. G. Milnes and L. F. Vassamillet, J. Appl. Phys.50, 11 (1979).

    Article  Google Scholar 

  15. A. G. Milnes, “Deep Impurities in Semiconductors,” Wiley, New York (1973).

    Google Scholar 

  16. G. M. Martin, Electron. Lett.13, 22 (1977).

    Article  Google Scholar 

  17. F. D. Auret, M. Nel and A. W. R. Leitch, S. A. J. Sci.84, 710 (1988).

    Google Scholar 

  18. H. Z. Zhu, Y. Adachi and I. Ikoma. J. Cryst. Growth55, 154 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venter, A., Auret, F.D. & Ball, C.A.B. Electrical characterisation of Cu-Diffusedn-GaAs epitaxial layers using optical deep level transient spectroscopy. J. Electron. Mater. 21, 877–882 (1992). https://doi.org/10.1007/BF02665543

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665543

Key words

Navigation