Skip to main content
Log in

Computer simulation of solid solution strengthening in Fcc alloys: Part II. At absolute zero temperature

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Computer simulation techniques were used to explicate solid solution strengthening in fcc metals. With this approach, it was not necessary to make a number of the assumptions used in analytical investigations. A semicontinuum model, with a flexible dislocation line interacting with a random array of solute atoms, was employed. The dislocation line tension was assumed constant, and classical elastic size or modulus interactions were assumed between the solute atoms and the dislocation line segment. The size effect was again found to be dominant, and the yield stress was predicted as {\(\tau _y \)}=0.069 με4/3 1/2. Although there were no adjustable parameters in this study, agreement with experimental data was quite good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suzuki:Dislocations and Mechanical Properties of Crystals, John Wiley, New York, NY, 1957, p. 361.

    Google Scholar 

  2. M.Z. Butt and P. Feltham:Acta Metall., 1978, vol. 26, p. 167.

    Article  CAS  Google Scholar 

  3. N.F. Mott and F.R.N. Nabarro: Report of a Conference on the Strength of Solids, University of Bristol, England, Physical Society, London, 1948.

  4. R.L. Fleischer:Acta Metall., 1962, vol. 10, p. 835.

    Article  CAS  Google Scholar 

  5. R.L. Fleischer:Acta Metall., 1963, vol. 11, p. 203.

    Article  CAS  Google Scholar 

  6. R.L. Fleischer:The Strengthening of Metals, Reinhold Publishing Co., New York, NY, 1964, p. 93.

    Google Scholar 

  7. J. Friedel:Dislocations, Addison-Wesley Publishing Co., Reading, MA, 1964.

    Google Scholar 

  8. R. Labusch:Phys. Stat. Sol., 1970, vol. 41, p. 659;Acta Metall., 1972, vol. 20, p. 917.

    Article  Google Scholar 

  9. R. Labusch:Rate Processes in Plastic Deformation of Materials, Proc. J.E. Dorn Symp., Plenum Press, New York, NY, 1975, p. 26.

    Google Scholar 

  10. T. Suzuki:Dislocation Dynamics, McGraw-Hill, New York, NY, 1968, p. 551.

    Google Scholar 

  11. O. Boser:Metall. Trans., 1972, vol. 3, pp. 843–49.

    Article  CAS  Google Scholar 

  12. O. Boser:J. Appl. Phys., 1973, vol. 44, pp. 1033 and 1038.

    Article  CAS  Google Scholar 

  13. B.R. Riddhagni and R.M. Asimow:J. Appl. Phys., 1968, vol. 39, pp. 4144, and 6159.

    Article  CAS  Google Scholar 

  14. U.F. Kocks:Metall. Trans. A, 1985, vol. 16A, pp. 2109–29.

    CAS  Google Scholar 

  15. W.R. Tyson:Physics of Solid Solution Strengthening, Plenum Press, New York, NY, 1973, p. 47.

    Google Scholar 

  16. A.H. Cottrell, S.C. Hunter, and F.R.N. Nabarro:Phil. Mag., 1953, vol. 44, p. 1064.

    CAS  Google Scholar 

  17. F.R.N. Nabarro:J. Less-Common Metals, 1972, vol. 28, p. 257.

    Article  CAS  Google Scholar 

  18. F.R.N. Nabarro:Phil. Mag., 1977, vol. 35, p. 613.

    Article  CAS  Google Scholar 

  19. F.R.N. Nabarro:Dislocation and Properties of Real Materials, The Institute of Metals, London, 1985, p. 152.

    Google Scholar 

  20. R.J. Arsenault, R. Hsu, and D. Esterling:Scripta Metall., 1981, vol. 15, p. 567.

    Article  Google Scholar 

  21. R.J. Arsenault, S. Patu, and D.M. Esterling:Metall. Trans. A, 1989, vol. 20A, pp. 1411–18.

    CAS  Google Scholar 

  22. A.J.E. Foreman and M.J. Makin:Phil. Mag., 1966, vol. 14, p. 911.

    Article  CAS  Google Scholar 

  23. A.J.E. Foreman and M.J. Makin:Can. J. Phys., 1967, vol. 45, p. 511.

    CAS  Google Scholar 

  24. Proc. 1976 Int. Conf. on Computer Simulation for Materials Applications, R.J. Arsenault, J.R. Beeler, Jr., and J.A. Simmons. eds., NBS, Gaithersburg, MD, April 1976; R. Labusch and R.B. Schwartz, vol. 2, p. 650; S.I. Zaitsev and E.M. Nadgornyi, vol. 2, p. 707; R.O. Scattergood and E.S.P. Das, vol. 2, p. 740; K. Hanson, S. Altintas, and J.W. Morris, Jr., vol. 2, p. 917.

    Google Scholar 

  25. R.J. Arsenault and T.W. Cadman:Phil. Mag., 1970, vol. 24. p. 259;Scripta Metall., 1972, vol. 6, p. 593;Scripta Metall., 1973, vol. 7, p. 631;Phys. Stat. Sol., 1974, vol. 24, p. 299;Rate Processes in Plastic Deformation, ASM, 1975, vol. 4, p. 102;Scripta Metall., 1978, vol. 12, p. 633;Metall. Trans. A, 1980, vol. 11A, pp. 127–34.

    Article  Google Scholar 

  26. K. Ono: Proc. 3rd Int. Conf. on the Strength of Metals and Alloys, Cambridge, England, The Institute of Metals and The Iron and Steel Institute, 1973, p. 6.

  27. C.T.K. Kuo and R.J. Arsenault:Mater. Sci. Eng., 1976, vol. 27, p. 11; 1977, vol. 30, p. 65.

    Google Scholar 

  28. J. Weertman and J.R. Weertman:Elementary Dislocation Theory, 3rd ed., Macmillan Co., New York, NY, 1967, p. 173.

    Google Scholar 

  29. J.P. Hirth and J. Lothe.Theory of Dislocations, McGraw-Hill, New York, NY, 1968, p. 624.

    Google Scholar 

  30. M. Cominou and J. Dundurs:J. Appl. Phys., 1972, vol. 43, p. 2461.

    Article  Google Scholar 

  31. M. Cominou: M.S. Thesis, Northwestern University, Evanston, IL, Aug. 1971.

  32. P. Haasen:Physical Metallurgy, Cambridge University, Cambridge, England, 1978.

    Google Scholar 

  33. D.J. Bacon, U.F. Kocks, and R.O. Scattergood:Phil. Mag., 1973, vol. 28, p. 1241.

    Article  Google Scholar 

  34. D.M. Esterling and R.J. Arsenault:Metall. Trans. A, 1982, vol. 13A, pp. 1429–34.

    Google Scholar 

  35. H. Suzuki:Strength of Metals and Alloys, Pergamon Press, New York, NY, 1985, vol. 3, p. 1727.

    Google Scholar 

  36. W.E. Nixon and J.W. Mitchell:Proc. Royal Soc. London, 1981, vol. 376A, p. 343.

    Google Scholar 

  37. Z.S. Basinski, R.A. Foxall, and R. Pascual:Scripta Metall., 1972, vol. 6, p. 807.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsenault, R.J., Patu, S. & Esterling, D.M. Computer simulation of solid solution strengthening in Fcc alloys: Part II. At absolute zero temperature. Metall Trans A 20, 1419–1428 (1989). https://doi.org/10.1007/BF02665499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665499

Keywords

Navigation