Skip to main content
Log in

Computer simulation of solid solution strengthening in Fcc alloys: Part I. Friedel and mott limits

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

It has been assumed for a number of years that dilute solid solutions obey a Friedel limit;i.e., the concentration dependence of the yield stress varies as 1/2 power (c 1/2), whereas in more concentrated solid solutions, the Mott limit is upheld with a predicted concentration dependence ofc 2/3. These two limits were examined both analytically and numerically. As expected, the Friedel limit can be reproduced without any difficulty. However, in the Mott limit, a detailed analytical treatment of the concentrated solution case resulted in a concentration dependence of the yield stress asc 1/2. The numerical data are in agreement with this analytical result in the Mott limit. Earlier work which predicted a,c 2/3 dependence is analyzed, and certain key assumptions are shown to be invalid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suzuki:Dislocations and Mechanical Properties of Crystals, John Wiley & Sons, New York, NY, 1957, p. 361;Strength of Metals and Alloys, Pergamon Press, New York, NY, 1985, vol. 3, p. 1727.

    Google Scholar 

  2. M.Z. Butt and P. Feltham:Reviews on the Deformation Behavior of Metals, 1978, vol. III, p. 99.

    Google Scholar 

  3. N.F. Mott and F.R.N. Nabarro Report of a Conference on the Strength of Solids, F, University of Bristol, England, Physical Society, London, 1948.

  4. R.L. Fleischer:Acta Metall., 1961, vol. 9, p. 996; 1963, vol. 11, p. 203.

    Article  CAS  Google Scholar 

  5. R.L. Fleischer:Acta Metall., 1962, vol. 10, p. 855.

    Google Scholar 

  6. R.L. Fleischer:The Strengthening of Metals, Reinhold Publ. Co., New York, NY, 1964, p. 93.

    Google Scholar 

  7. J. Friedel:Dislocations, Addison-Wesley Publ. Co., Reading, MA, 1964.

    Google Scholar 

  8. R. Labusch:Phys. Stat. Sol., 1970, vol. 41, p. 659;Acta Metall., 1972, vol. 20, p. 917.

    Article  Google Scholar 

  9. R. Labusch:Rate Processes in Plastic Deformation of Materials, Proc. from the J.E. Dorn Symp., Plenum Press, New York, NY, 1975, p. 26.

    Google Scholar 

  10. T. Suzuki:Dislocation Dynamics, McGraw-Hill, New York, NY, 1968, p. 551.

    Google Scholar 

  11. O. Boser:Metall. Trans., 1972, vol. 3, pp. 843–49.

    Article  CAS  Google Scholar 

  12. O. Boser:J. Appl. Phys., 1973, vol. 44, pp. 1033, 1038.

    Article  CAS  Google Scholar 

  13. B.R. Riddhagni and R.M. Asimow:J. Appl. Phys., 1968, vol. 30, p. 4144; 1968, vol. 39, p. 6159.

    Article  Google Scholar 

  14. W.R. Tyson:Physics of Solid Solution Strengthening, Plenum Press, New York, NY, 1973, p. 47.

    Google Scholar 

  15. A.H. Cottrell, S.C. Hunter., and F.R.N. Nabarro:Phil. Mag., 1953, vol. 44, pp. 1064.

    CAS  Google Scholar 

  16. F.R.N. Nabarro:J. Less-Common Metals, 1972, vol. 29, p. 257.

    Article  Google Scholar 

  17. F.R.N. Nabarro:Phil. Mag., 1977, vol. 35, p. 613.

    Article  CAS  Google Scholar 

  18. F.R.N. Nabarro:Dislocation and Properties of Real Materials, The Institute of Metals, London, 1985, p. 152.

    Google Scholar 

  19. R.J. Arsenault, R. Hsu, and D. Esterling:Scripta Metall., 1981, vol. 15, p. 567.

    Article  Google Scholar 

  20. U.F. Kocks, A.S. Argon, and M.F. Ashby:Thermodynamics and Kinetics of Slip in Prog. in Mat. Sci., Pergamon Press, Oxford, 1975, vol. 19.

    Google Scholar 

  21. U.F. Kocks:Metall. Trans. A, 1985, vol. 16A, pp. 2109–29.

    CAS  Google Scholar 

  22. A.J.E. Foreman and M.J. Makin:Phil. Mag., 1966, vol. 14, p. 911.

    Article  CAS  Google Scholar 

  23. A.J.E. Foreman and M.J. Makin:Canadian J. Phys., 1967, vol. 45, p. 511.

    CAS  Google Scholar 

  24. Proc. 1976 Int. Conf. on Computer Simulation for Materials Applications, R.J. Arsenault, J.R. Beeler, Jr., and J.A. Simmons, eds., NBS, Gaithersburg, MD, April 1976; R. Labusch and R.B. Schwartz, vol. 2 p. 650; S.I. Zaitsev and E.M. Nadgornyi, vol. 2, p. 707; R.O. Scattergood and E.S.P. Das, vol. 2, p. 740; K. Hanson, S. Altintas, and J.W. Morris, Jr., vol. 2, p. 917.

    Google Scholar 

  25. R.J. Arsenault and T.W. Cadman:Phil. Mag., 1970, vol. 24, p. 259;Scripta Metall., 1973, vol. 6, p. 593;Scripta Metall., 1973, vol. 7, p. 631;Phys Stat. Sol., 1974, vol. 24, p. 299;Rate Processes in Plastic Deformation, ASM, 1975, vol. 4, p. 102;Scripta Metall., 1978, vol. 12, p. 633;Metall. Trans. A, 1980, vol. 11A, pp 127–34;Scripta Metall., 1981, vol. 15, p. 995;Scripta Metall., 1984, vol. 18, p. 495.

    Article  Google Scholar 

  26. K. Ono: Proc. of the 3rd Int. Conf. on the Strength of Metals and Alloys, Cambridge, England, 1973.

  27. C.T.K. Kuo and R.J. Arsenault,Mater. Sci. Eng., 1976, vol. 27, p. 11; 1977, vol. 30, p. 65.

    Google Scholar 

  28. R.B. Schwartz and R. Labusch:J. Appl. Phys., 1978, vol. 49, p. 5174.

    Article  Google Scholar 

  29. D.M. Esterling and R.J. Arsenault:Metall. Trans. A, 1982, vol. 13A, pp. 1429–34.

    Google Scholar 

  30. W.E. Nixon and J.W. Mitchell:Proc. Royal Soc. London, 1981, vol. 376A, p. 343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsenault, R.J., Patu, S. & Esterling, D.M. Computer simulation of solid solution strengthening in Fcc alloys: Part I. Friedel and mott limits. Metall Trans A 20, 1411–1418 (1989). https://doi.org/10.1007/BF02665498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665498

Keywords

Navigation