Skip to main content
Log in

Velocity distribution in rectangular packed beds and non-ferrous blast furnaces

  • Process Metallurgy
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

A theoretical equation for predicting velocity profiles in beds of rectangular geometry packed with equal-sized particles is presented. Use of this equation to predict velocity profiles requires the measurement of only one experimental variable. Predicted and measured velocity profiles in square and rectangular packed beds using a thermistor probe were in good agreement (±5 and ±10 pct respectively). For packings containing a range of sizes it was found that the velocity was greater at the wall and at the center of the bed than it was in the intermediate regions. This behavior, which has not been previously reported, is attributed to porosity variations. Results obtained from a slice model of a copper blast furnace indicate that in these furnaces there are two separate regions of flow. One of these has two components of velocity and the other has only one. In the single component flow region the velocity may be predicted by the theoretical equation presented. The implications of the results of this investigation to nonferrous blast furnaces are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross sectional area of empty duct

B :

constant

D e :

equivalent diameter

H :

height above liquid bath of one component velocity region

I o :

modified Bessel function of the first order

L :

width of furnace at liquid bath

P :

wetted perimeter

R H :

hydraulic radius

r :

radial position in the bed

r e :

equivalent radius

ř :

radius of outer edge of central core

U :

local superficial gas velocity

U o :

center line superficial gas velocity

Û :

superficial gas velocity at the edge of the central core

\(\overline V \) :

mean superficial gas velocity

α:

Û/U o

References

  1. V. I. Loginov:Steel and Coal 1963, June 14, p. 1154.

  2. H. W. Hosking, W. O. Philbrook, and N. B. Melcher:Trans. TMS, AIME, 1959, vol. 215, p. 96.

    CAS  Google Scholar 

  3. T. Shimotsuma and K. Sano: “Study on Permeability in Blast Furnace,” Nippon Research Centre, Nippon Kokan K.K., Japan, 1967.

    Google Scholar 

  4. N. H. Zhavoronkov, M. E. Aerov, and M. M. Umnik:J. Phys. Chem. (Moscow), 1949, vol. 23, p. 342.

    CAS  Google Scholar 

  5. M. E. Aerov and M. M. Umnik:J. Appl. Chem. USSR, 1950, vol. 23, p. 1071.

    CAS  Google Scholar 

  6. K. Polthier:Archiv. Eisenhütten. 1966, vol. 37, p. 453.

    CAS  Google Scholar 

  7. M. Morales, C. W. Stinn, and J. M. Smith:Ind. Eng. Chem., 1951, vol. 43, p. 225.

    Article  CAS  Google Scholar 

  8. C. E. Schwartz and J. M. Smith:Ind. Eng. Chem., 1953, vol. 45, p. 1209.

    Article  CAS  Google Scholar 

  9. V. P. Dorweiler and R. W. Fahien:AIChE J., 1959, vol. 5, p. 139.

    Article  CAS  Google Scholar 

  10. M. Collins: B.Ch.E. Thesis, Univ. of Delaware, 1958.

  11. H. S. Mickley, D. A. Smith, and E. J. Korchak:Chem. Eng. Sci., 1965, vol. 20, p. 237.

    Article  CAS  Google Scholar 

  12. J. Price: T.M. 332, Australian Atomic Energy Commission (A.A.E.C.) 1968.

  13. J. Price:Instn. Engrs. Aust. Mech. and Chem. Eng. Trans., 1968, vol. MC4, p. 7.

    Google Scholar 

  14. G. G. Brown,et al.: “Unit Operations,” Wiley, New York, 1960.

    Google Scholar 

  15. P. S. Barna: “Fluid Mechanics for Engineers,” 3rd ed., 1969, Butterworth, Sydney.

    Google Scholar 

  16. S. Ergun:Chem. Eng. Progr., 1952, vol. 48, p. 89.

    CAS  Google Scholar 

  17. L. H. S. Roblee, R. M. Baird, and J. W. Tierney:AIChE J., 1958, vol. 4, p. 460.

    Article  CAS  Google Scholar 

  18. R. F. Benenati and C. B. Brosilow:AIChE J., 1962, vol. 8, p. 359.

    Article  CAS  Google Scholar 

  19. J. Price and J. R. Stevens: T.M. 354, A.A.E.C., 1966.

  20. J. A. Becker, C. B. Green, and G. L. Pearson:Bell Syst. Tech. J., 1947, vol. 26, p. 170.

    Google Scholar 

  21. E. H. Blum and R. H. Wilhelm: AIChE-Inst. Chem. Eng. Symp. No. 4, June 13–17, 1965, London, p. 4/21.

  22. M. M. Levine and J. Chernick:Nature (London), 1965, vol. 208, p. 69.

    Article  Google Scholar 

  23. M. Kimura, K. Nono, and T. Koneda:Chem. Eng. (Japan), 1955, vol. 19, p. 397.

    CAS  Google Scholar 

  24. K.L. Smith and G. H. Roper:Aust. J. Chem. Eng., Aug, 1960, vol. 1, p. 5.

    Google Scholar 

  25. J. F. Elliott, R. A. Buchanan, and J. B. Wagstaff:Trans. AIME, 1952, vol. 194, p. 709.

    Google Scholar 

  26. R. Newell: M. Sc. Thesis, University of New South Wales, 1971.

  27. A. I. Evdokimenko: “The Metallurgy of Non-Ferrous Metals,” Metallurgia Press, Moscow 1969.

    Google Scholar 

  28. K. C. McCutcheon:Blast Furnace and Steel Plants, October, 1969, p. 930.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newell, R., Standish, N. Velocity distribution in rectangular packed beds and non-ferrous blast furnaces. Metall Trans 4, 1851–1857 (1973). https://doi.org/10.1007/BF02665412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665412

Keywords

Navigation