Skip to main content
Log in

Microstructure-mechanical property relationships in isothermally transformed vanadium steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The relationships between the interphase precipitation reaction and the mechanical properties of an Fe-0.2C-l.0V-0.5Mn steel were studied after isothermal transformation in the temperature range 600 °C to 750 °C. The strength and room temperature toughness of the transformed steel are found to be determined by the austenitization temperature, vanadium carbide solubility, volume fraction of VC available for precipitation, size of the precipitates, and ferrite grain size. Yield strength increments due to precipitation are predicted by Melander’s model for critical resolved shear stress, when all the available carbide precipitated as interphase VC. For lower austenitization temperatures, yield strength increments are modeled by a bimodal distribution of undissolved and interphase (or matrix) precipitates. Six classifications of VC morphologies are identified in the transformed microstructures, but one of these, the “fibrous” VC morphology, could not be associated with degradation of toughness as suggested by Mishima. The impact transition temperatures are approximated by regression analyses for bainitic steels. The results show that both strength and toughness can be simultaneously optimized in this steel and suggest that microstructures with strength and toughness levels equivalent to those of quenched and tempered steels can be produced in vanadium steels by thedirect decomposition of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Davenport, F. G. Berry, and R. W. K. Honeycombe:Metal Sci. J., 1968, vol. 2, pp. 104–06.

    Article  CAS  Google Scholar 

  2. A. D. Batte: Ph.D. Dissertation, Cambridge University, 1970.

  3. R. W. K. Honeycombe:Metall. Trans. A, 1976, vol. 7A, pp. 915–36.

    CAS  Google Scholar 

  4. R.W. K. Honeycombe:Met. Sci., 1980, vol. 14, pp. 201–14.

    Article  CAS  Google Scholar 

  5. R.W. K. Honeycombe:Proc. AIME Symposium, Philadelphia, PA, Oct. 1983.

  6. J. H. Woodhead: Proc. Seminar “Vanadium in High Strength Steels”, Vanitec, Chicago, IL, 1979, pp. A-l.

    Google Scholar 

  7. A. T. Davenport and R. W. K. Honeycombe:Proc. Roy. Soc., 1971, vol. 322, 1549, pp. 191–205.

    Article  CAS  Google Scholar 

  8. R.A. Ricks and P. R. Howell:Acta Metall., 1983, vol. 31, 6, pp. 853–61.

    Article  CAS  Google Scholar 

  9. A. M. Sage, D. M. Hayes, C. C. Earley, and E. A. Almond:Metals Technology, 1976, vol. 19, 7, pp. 293–302.

    Google Scholar 

  10. P. R. Wilyman and R. W. K. Honeycombe:Metal Science, 1982, vol. 16, 6, pp. 295–303.

    Article  CAS  Google Scholar 

  11. Y. Mishima, R. M. Horn, V. F. Zackay, and E. R. Parker:Metall. Trans. A, 1980, vol. 11A, pp. 431–40.

    CAS  Google Scholar 

  12. J. B. Benson:Metal Science, 1979, vol. 13, 6, pp. 366–72.

    Article  CAS  Google Scholar 

  13. W. Roberts, A. Sandberg, and T. Siwecki: Proc. Vanitec Seminar on Vanadium Steels, Krakow, 8–10 Oct. 1980, pp. D1–D12.

  14. J. M. Chilton and M. J. Roberts:Metall. Trans. A, 1980, vol. 11A, pp. 1711–21.

    CAS  Google Scholar 

  15. R. K. Amin, M. Korchinsky, and F. B. Pickering:Metals Technology, 1981, vol. 24, 7, p. 250.

    Google Scholar 

  16. G. Glover, R. B. Oldland, and R. Louis: Proc. HSLA Conference, Wollongong, NSW, Australia, Aug. 20-24, 1984.

    Google Scholar 

  17. “The Influence of Precipitation Mode and State of Ferrite on the Impact Properties of Vanadium Treated Steels” (BSC) V7: British Steel Corporation Final Report to Vanitec, Winterton House, Westerham, Kent TN16 1AJ, England, March 1984.

  18. “The Effect of Additions of 0.15% to 0.45% Vanadium on the Microstructures of Laboratory Melts of an 0.06%C, 1.9%Mn Steel Plate Cooled Under Conditions Simulating those of a Coil”: Vanitec Report DR 3/81, revised Feb. 1982, Winterton House, Westerham, Kent TN16 1AJ, England.

  19. Y. Mishima: Ph.D. Dissertation, U. C. Berkeley, Berkeley, CA, Aug. 1979.

    Google Scholar 

  20. J. A. Todd and E. R. Parker:Proc. Seventh Annual Conference on Materials for Coal Conversion and Utilization, NBS, Gaithersburg, MD, Nov. 16-19, 1982, pp. 387–99.

    Google Scholar 

  21. A.D. Batte and R.W.K. Honeycombe:J.I.S.I., 1973, vol. 211, pp. 284–89.

    CAS  Google Scholar 

  22. D.V. Edmonds:J.I.S.I., 1972, vol. 210, 5, pp. 363–65.

    CAS  Google Scholar 

  23. .C. Law: Ph.D. Dissertation, University of Cambridge, 1977.

  24. . Aronsson: Proc. AMAX Symposium “Steel-Strengthening Mechanisms”, Zurich, Switzerland, 5–6 May, 1969, pp. 77–87.

  25. K. Bungardt, K. Kind, and W. Oelson:Arch. Eisenhüttenwes., 1956, vol. 17, pp. 61–66.

    Google Scholar 

  26. M.G. Fronberg and H. Graf:Stahl u. Eisen, 1960, vol. 80, pp. 539–41.

    Google Scholar 

  27. J. Wadsworth, S.R. Keown, and J. H. Woodhead:Metal Science, 1976, vol. 10, 3, pp. 105–12.

    Article  CAS  Google Scholar 

  28. J. Wadsworth, J. H. Woodhead, and S. R. Keown:Metal Science, 1976, vol. 10, 10, pp. 342–48.

    Article  CAS  Google Scholar 

  29. J. Wadsworth:Metall. Trans. A, 1983, vol. 14A, pp. 285–94.

    Google Scholar 

  30. Sekine, Inoue, Ogasawara:Trans. I.S.I. Japan, 1968, vol. 8, p. 101.

    CAS  Google Scholar 

  31. K. Narita:Trans. I.S.I. Japan, 1975, vol. 27, p. 145.

    Google Scholar 

  32. S. Koyama, T. Ishii, and K. Narita:J. Japan Inst. Metals, 1973, vol. 37, p. 191.

    CAS  Google Scholar 

  33. W. Roberts and A. Sandberg: Swedish Institute for Metals Report IM-1489, October 1980.

  34. B.W. Christ and G.V. Smith:Acta Metall., 1967, vol. 15, pp. 809–16.

    Article  CAS  Google Scholar 

  35. F. B. Pickering and T. Gladman: Metallurgical Developments in Carbon Steels, I.S.I. London, 1963, vol. 10.

    Google Scholar 

  36. F. B. Pickering:Physical Metallurgy and the Design of Steels, Applied Science Publishers, London, 1978.

    Google Scholar 

  37. A. Melander:Scand. J. of Metallurgy, 1978, vol. 7, pp. 109–13.

    CAS  Google Scholar 

  38. K. Hanson and J. W. Morris Jr.:J. Appl. Phys., 1975, vol. 46, 983, pp. 2378–82.

    Article  Google Scholar 

  39. D. J. Bacon, U. F. Kocks, and R. O. Scattergood:Phil. Mag., 1973, vol. 28, pp. 1241–63.

    Article  Google Scholar 

  40. R. Ebeling and M. F. Ashby:Phil. Mag., 1966, vol. 13, pp. 805–34.

    Article  CAS  Google Scholar 

  41. M.F. Ashby and R. Ebeling:Trans. AIME, 1966, vol. 236, pp. 1396–1404.

    CAS  Google Scholar 

  42. T. Gladman, D. Dulieu, and I. D. Mclvor:Microalloying 75, M. Korchinsky, ed., Union Carbide Corp., New York, NY, 1976, vol. 1, pp. 32–55.

    Google Scholar 

  43. U.F. Kocks:Phil. Mag., 1966, vol. 13, pp. 541–66.

    Article  Google Scholar 

  44. K.J. Irvine, F. B. Pickering, and T. Gladman:J. I.S.I., 1967, vol. 207, pp. 161–82.

    Google Scholar 

  45. E. Smith:Acta Metall., 1966, vol. 14, pp. 583–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, J.A., Li, P. Microstructure-mechanical property relationships in isothermally transformed vanadium steels. Metall Trans A 17, 1191–1202 (1986). https://doi.org/10.1007/BF02665318

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665318

Keywords

Navigation