Skip to main content
Log in

Hydrogen effects on brittle fracture of the titanium aluminide alloy Ti-24Al-11Nb

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Varying amounts of hydrogen were dissolved in the titanium aluminide alloy Ti-24Al-llNb (atomic percent). Virtually all of this hydrogen probably precipitated as hydride on cooling because the terminal solubility in the dominant Ti3Al phase is very low at room temperature. Although the yield strength (YS) increased, the ultimate tensile strength (UTS), ductility, fracture stress in notched bend bars, and fracture toughness decreased with increasing amounts of hydride. The strength and fracture properties, for all hydride contents, did not change with testing speed below about 5 to 50 mm/min but decreased steeply for speeds greater than that. The presence of hydride decreased the critical value of testing speed by about an order of magnitude. Brittle cracks in bluntly notched bend bars, with or without hydride, nucleated at the notch root or at a distance below the root which was less than one fifth of the distance to the peak stress location. This result suggests that the cleavagelike cracking in this material is not controlled by normal stress alone but has some dependence on the applied strain. The fracture surfaces of notched or precracked specimens, with or without hydride, consisted entirely of cleavagelike fracture, but these cracks exhibited stable crack propagation. This permitted both the measurement of crack resistance or R curves and also observation of the initiation and propagation of the crack with increasing KI. The results showed that cracks initiated discontinuously at characteristic sites within the plastic zone and along the slip bands when the plastic deformation ahead of the precrack developed to a particular and reproducible extent. Literature cleavage models were compared to results for the present tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Lipsitt:Ordered Intermetallic Alloys, MRS Symp., C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., MRS, Pittsburgh, PA, 1985, vol. 39, pp. 351–64.

    Google Scholar 

  2. A.W. Thompson, W.-Y. Chu, and J.C. Williams:Summary Proc. 2nd Workshop on Hydrogen-Materials Interaction, NASP Joint Program Office Workshop Publication 1004, H.G. Nelson, ed., NASA-Ames, Moffett Field, CA, 1988, pp. 133–35.

    Google Scholar 

  3. W.-Y. Chu and A.W. Thompson:Ada Metall. Mater., in press.

  4. A.W. Thompson: inEnvironmental Effects on Advanced Materials, R.H. Jones and R.E. Ricker, eds., TMS-AIME, Warrendale, PA, 1991, pp. 21–33.

    Google Scholar 

  5. D.S. Shih, G.K. Scarr, and G.E. Wasielewski:Scripta Metall., 1989, vol. 23, pp. 973–78.

    Article  CAS  Google Scholar 

  6. E. Manor and D. Eliezer:Scripta Metall., 1989, vol. 23, pp. 1313–18.

    Article  CAS  Google Scholar 

  7. W.-Y. Chu, A.W. Thompson, and J.C. Williams: inHydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1990, pp. 543–53.

    Google Scholar 

  8. M. Gao, J.B. Boodey, and R.P. Wei:Scripta Metall. Mater., 1990, vol. 24, pp. 2135–38.

    Article  CAS  Google Scholar 

  9. M.J. Blackburn, D.L. Ruckle, and C.E. Bevan: Technical Report No. AFML-TR-78-18, Air Force Materials Laboratory, Wright-Patterson AFB, OH, 1978.

    Google Scholar 

  10. M.J. Blackburn and M.P. Smith: Technical Report No. AFWAL-TR-82-4086, Air Force Wright Aeronautical Laboratory, Wright-Patterson AFB, OH, 1982.

    Google Scholar 

  11. R.L. Fleischer, D.M. Dimiduk, and H.A. Lipsitt:Ann. Rev. Mater. Sci., 1989, vol. 19, pp. 231–63.

    Article  CAS  Google Scholar 

  12. C.H. Ward, J.C. Williams, A.W. Thompson, D.G. Rosenthal, and F.H. Froes:Proc. 6th World Conf. on Ti, P. Lacombe, R. Tricot, and G. Beranger, eds., Les Editions de Physique, Paris, 1989, vol. 2, pp. 1103–08.

    Google Scholar 

  13. K.S. Chan:Metall. Trans. A, 1990, vol. 21A, pp. 2687–99.

    Article  CAS  Google Scholar 

  14. D.A. Koss, D. Banerjee, D.A. Lukasak, and A.K. Gogia: inHigh Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D.P. Pope, and J.O. Stiegler, eds., TMS-AIME, Warrendale, PA, 1990, pp. 175–96.

    Google Scholar 

  15. A.W. Thompson:Mater. Sci. Technol., 1985, vol. 1, pp. 711–18.

    Article  CAS  Google Scholar 

  16. E. Orowan:Trans. Inst. Engrs. Shipbuilders Scot., 1945, vol. 89, pp. 162–215.

    Google Scholar 

  17. J.F. Knott:Fundamentals of Fracture Mechanics, Butterworth’s, London, 1973, ch. 7 and 8, pp. 176–233.

    Google Scholar 

  18. J.F. Knott:J. Iron Steel Inst., 1967, vol. 205, pp. 288–91.

    Google Scholar 

  19. R.O. Ritchie, J.F. Knott, and J.R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  20. D.A. Curry and J.F. Knott:Met. Sci., 1978, vol. 12, pp. 511–14.

    Article  CAS  Google Scholar 

  21. J.J. Lewandowski and A.W. Thompson:Acta Metall., 1987, vol. 35, pp. 1453–62.

    Article  CAS  Google Scholar 

  22. I.-G. Park and A.W. Thompson:Metall. Trans. A, 1991, vol. 22A, pp. 1615–26.

    Article  CAS  Google Scholar 

  23. J.F. Knott:Fundamentals of Fracture Mechanics, Butterworth’s, London, 1973, ch. 5, pp. 114–49.

    Google Scholar 

  24. S.R. Novak and S.T. Rolfe:J. Mater., 1969, vol. 4, pp. 701–28.

    Google Scholar 

  25. J.P. Blackledge: inMetal Hydrides, W.M. Mueller, J.P. Blackledge, and G.G. Libowitz, eds., Academic Press, NY, 1968, pp. 151–56.

    Google Scholar 

  26. J.R. Griffiths and D.R.J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  27. D.J. Alexander, J.J. Lewandowski, W.J. Sisak, and A.W. Thompson:J. Mech. Phys. Solids, 1986, vol. 34, pp. 433–54.

    Article  Google Scholar 

  28. A.W. Thompson: inTransmission and Storage, Vol. II of Hydrogen: Its Technology and Implications, K.E. Cox and K. Williamson, eds., CRC Press, Cleveland, OH, 1977, pp. 85–124.

    Google Scholar 

  29. W.-Y. Chu, CM. Hsiao, and S.Q. Li:Scripta Metall., 1979, vol. 13, pp. 1057–62.

    Article  CAS  Google Scholar 

  30. D.P. DeLuca, B.A. Cowles, F.K. Haake, and K.P. Holland: Technical Report No. WRDC-TR-89-4136, Air Force Materials Laboratory, Wright-Patterson AFB, OH, 1990.

    Google Scholar 

  31. W.-Y. Chu and A.W. Thompson:Metall. Trans. A, 1991, vol. 22A, pp. 71–81.

    CAS  Google Scholar 

  32. A.W. Thompson and W.-Y. Chu:Summary Proc. 3rd Workshop on Hydrogen-Materials Interaction, NASP Joint Program Office Workshop Publication 1007, H.G. Nelson, ed., NASA-Arnes, Moffett Field, CA, 1990, pp. 125–30.

    Google Scholar 

  33. J.M. Larsen, K.A. Williams, S.J. Balsone, and M.A. Stucke: inHigh Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D.P. Pope, and J.O. Stiegler, eds., TMS-AIME, Warrendale, PA, 1990, pp. 521–56.

    Google Scholar 

  34. T.R. Wilshaw, C.A. Rau, and A.S. Tetelman:Eng. Fract. Mech., 1968, vol. 1, pp. 191–211.

    Article  Google Scholar 

  35. A.W. Thompson and I.M. Bernstein: inAdvances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum, New York, NY, 1980, vol. 7, pp. 53–175.

    Chapter  Google Scholar 

  36. L.D. Jaffe:Trans. AIME, 1956, vol. 206, p. 861.

    Google Scholar 

  37. W.M. Mueller: inMetal Hydrides, W.M. Mueller, J.P. Blackledge, and G.G. Libowitz, eds., Academic Press, New York, NY, 1968, pp. 337–83.

    Google Scholar 

  38. H. Numakura and M. Koiwa:Acta Metall., 1984, vol. 32, pp. 1799–1807.

    Article  CAS  Google Scholar 

  39. A. San-Martin and F.D. Manchester: inPhase Diagrams of Binary Titanium Alloys, J.L. Murray, ed., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 123–35.

    Google Scholar 

  40. A.W. Thompson: inIntermetallics 1991, S.H. Whang, CT. Liu, D.P. Pope, and S.M. Sastry, eds., Elsevier-Sequoia, London, in press.

    Google Scholar 

  41. N.E. Paton and J.C. Williams: inHydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 409–31.

    Google Scholar 

  42. H.K. Birnbaum: inHydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS-AJME, Warrendale, PA, 1990, pp. 639–58.

    Google Scholar 

  43. P.E. Irving and C.J. Beevers:J. Mater. Sci., 1972, vol. 7, pp. 23–30.

    Article  CAS  Google Scholar 

  44. G.T. Gray: Los Alamos National Laboratory, Los Alamos, NM, personal communication, 1991.

  45. J.F. Knott: inAtomistics of Fracture, Proc. NATO Advanced Research Institute, R.M. Latanision and J.R. Pickens, eds., Plenum, New York, NY, 1983, pp. 209–34.

    Google Scholar 

  46. D.A. Curry, J.E. King, and J.F. Knott:Met. Sci., 1978, vol. 12, pp. 247–50.

    CAS  Google Scholar 

  47. R.O. Ritchie and A.W. Thompson:Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  48. T. Lin, A.G. Evans, and R.O. Ritchie:Acta Metall., 1986, vol. 34, pp. 2205–16.

    Article  CAS  Google Scholar 

  49. CD. Beachem and R.M.N. Pelloux: inFracture Toughness Testing and Its Applications, STP 381, ASTM, Philadelphia, PA, 1965, pp. 210–44.

    Book  Google Scholar 

  50. J.J. Lewandowski and A.W. Thompson: inHydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1990, pp. 861–70.

    Google Scholar 

  51. Robert E. Schafrik:Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    Article  CAS  Google Scholar 

  52. S.M.L. Sastry and H.A. Lipsitt:Metall. Trans. A, 1977, vol. 8A, pp. 1543–52.

    Article  CAS  Google Scholar 

  53. J.C. Williams and M.J. Blackburn: inOrdered Alloys, B.H. Kear, C.T. Sims, N.S. Stoloff, and J.H. Westbrook, eds., Claitor’s, Baton Rouge, LA, 1970, pp. 425–45.

    Google Scholar 

  54. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik:Metall. Trans. A, 1980, vol. 11A, pp. 1369–75.

    Article  CAS  Google Scholar 

  55. B.J. Marquardt, G.K. Scarr, J.C. Chesnutt, C.G. Rhodes, and H.L. Fraser: inProc. 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds., Les Editions de Physique, Paris, 1989, vol. 2, pp. 955–63;

    Google Scholar 

  56. S.A. Court, J.P.A. Löfvander, M.H. Loretto, and H.L. Fraser:Phil. Mag. A, 1990, vol. 61, pp. 109–39.

    Article  CAS  Google Scholar 

  57. Y. Minonishi:Phil. Mag. A, 1991, vol. 63, pp. 1085–93.

    Article  CAS  Google Scholar 

  58. S.M.L. Sastry and H.A. Lipsitt: inTitanium ’80, Proc. 4th Int. Conf. on Ti, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, vol. 2, pp. 1231–43.

    Google Scholar 

  59. A.N. Stroh:Adv. Phys., 1957, vol. 6, pp. 418–65.

    Article  Google Scholar 

  60. A.H. Cottrell:Trans. AIME, 1958, vol. 212, pp. 192–203.

    CAS  Google Scholar 

  61. E. Smith:Acta Metall., 1966, vol. 14, pp. 985–89 and 991–96.

    Article  CAS  Google Scholar 

  62. E. Smith and J.T. Barnby:Met. Sci. J., 1967, vol. 1, pp. 56–64.

    CAS  Google Scholar 

  63. M.H. Kamdar:Metall. Trans., 1971, vol. 2, pp. 485–89.

    Article  CAS  Google Scholar 

  64. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch:Phil. Mag., 1962, vol. 7, pp. 45–58.

    Article  CAS  Google Scholar 

  65. R.L. Jones and H. Conrad:Trans. AIME, 1969, vol. 245, pp. 779–89.

    CAS  Google Scholar 

  66. W.-Y. Chu and A.W. Thompson:Scripta Metall. Mater., 1991, vol. 25, pp. 641–44.

    Article  CAS  Google Scholar 

  67. S.V. Nair and J.K. Tien:Metall. Trans. A, 1985, vol. 16A, pp. 2333–40.

    Article  CAS  Google Scholar 

  68. R.C. Bates: inMetallurgical Treatises, J.K. Tien and J.F. Elliott, eds., TMS-AIME, Warrendale, PA, 1981, pp. 551–70.

    Google Scholar 

  69. D.A. Lukasak and D.A. Koss:Metall. Trans. A, 1990, vol. 21A, pp. 135–43.

    Article  CAS  Google Scholar 

  70. M. Niinomi, T. Kobayashi, K. Ryugoh, J.C. Williams, W.H. Garrison, and A.W. Thompson: inProc. Int. Symp. on Intermetallic Compounds (JIMIS-6), O. Izumi, ed., Japan Institute of Metals, Sendai, Japan, 1991, pp. 531–36.

    Google Scholar 

  71. R. Strychor, J.C. Williams, and W.A. Soffa:Metall. Trans. A, 1988, vol. 19A, pp. 225–34.

    Article  CAS  Google Scholar 

  72. W.-Y. Chu and A.W. Thompson: inHigh Performance Composites for the 1990’s, S.K. Das, C.P. Ballard, and F. Marikar, eds., TMS-AIME, Warrendale, PA, 1991, pp. 143–57.

    Google Scholar 

  73. C.J. McMahon and M. Cohen:Acta Metall., 1965, vol. 13, pp. 591–604.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

WU-YANG CHU, Formerly Visiting Professor, Carnegie Mellon University,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, WY., Thompson, A.W. Hydrogen effects on brittle fracture of the titanium aluminide alloy Ti-24Al-11Nb. Metall Trans A 23, 1299–1312 (1992). https://doi.org/10.1007/BF02665062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665062

Keywords

Navigation