Skip to main content
Log in

Effect of oxide scale on carbon deposition on Fe-Ni alloys in carburizing gas

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The behavior of carbon deposition on preoxidized Fe-Ni alloys containing 0 to 57.0 mass pct Ni in 10 pct CH4-H2 mixture at 1203 K was studied by metallography and thermogravimetry. Nickel retarded carburization and carbon deposition by lowering the solubility limit of graphite in austenite and by reducing catalytic activity for the pyrolytic reaction of CH4. On oxidation in air, the addition of nickel to iron depressed the development of FeO and, thereby, caused a significant decrease in the thickness of the scale. The exposure of the alloys to 10 pct CH4-H2 mixture after the oxidation in air led to a sudden mass loss in the early stage and then a rapid mass gain. This mass change is primarily ascribed to mass loss by reduction of iron oxides and to mass gain by carbon deposition. The rapid mass gain by carbon deposition is probably due to the formation of active iron by reduction of iron oxides and to the increase in the reaction area by spallation of the scale; the active iron formed may promote filamentous carbon deposition through Fe3C formation and decomposition. Carbon deposition on the alloys containing 27.2 mass pct Ni or more was considerably retarded because of the formation of a thin oxide scale which consists of α-Fe2O3 and spinel (NixFe3−xO4) and the reduction of catalysis by enrichment of nickel in the subscale. However, the amounts of carbon deposition increased compared with those on the as-polished alloys, owing to the presence of reducible iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASM Committee on Gas Carburizing:Metals Handbook, 1981, 9th ed., vol. 4, pp. 166–67.

    Google Scholar 

  2. M. Shimada:Tetsu-to-Hagané, 1984, vol. 70, pp. 1530–40.

    CAS  Google Scholar 

  3. H.J. Grabke and I. Wolf:Mater. Sci. Eng., 1987, vol. 87, pp. 23–33.

    Article  CAS  Google Scholar 

  4. S. Ando, T. Shimoo, and H. Kimura:J. Jpn. Inst. Met., 1986, vol. 50, pp. 395–403.

    CAS  Google Scholar 

  5. S. Ando, T. Nagashima, T. Shimoo, and H. Kimura:J. Jpn. Inst. Met., 1988, vol. 52, pp. 553–60.

    CAS  Google Scholar 

  6. S. Ando, Y. Nakayama, T. Shimoo, and H. Kimura:J. Jpn. Inst. Met., 1989, vol. 53, pp. 63–70.

    CAS  Google Scholar 

  7. S. Ando, Y. Nakayama, and H. Kimura:Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 511–16.

    CAS  Google Scholar 

  8. S. Ando and H. Kimura:Mater. Trans., JIM, vol. 30, pp. 772–80.

  9. ASM Committee on Heat-Resisting Alloys and Refractory Metals:Metals Handbook, 1980, 9th ed., vol. 3, pp. 189–206.

    Google Scholar 

  10. I.A. Menzies and W.J. Tomlinson:J. Iron Steel Inst., 1966, vol. 204, pp. 1239–53.

    CAS  Google Scholar 

  11. L.A. Morris and W.W. Smeltzer:Acta Metall., 1967, vol. 15, pp. 1591–96.

    Article  CAS  Google Scholar 

  12. I.A. Menzies and J. Lubkiewilz:J. Electrochem. Soc, 1970, vol. 117, pp. 1539–44.

    Article  CAS  Google Scholar 

  13. F.N. Rhines and R.G. Connell, Jr.:J. Electrochem. Soc, 1977, vol. 124, pp. 1122–28.

    Article  CAS  Google Scholar 

  14. R.T. Foley:J. Electrochem. Soc, 1962, vol. 109, pp. 1202–06.

    Article  CAS  Google Scholar 

  15. K. Kusabiraki, H. Toki, T. Ishiguro, and T. Ooka:Tetsu-to-Hagané, 1988, vol. 74, pp. 871–78.

    CAS  Google Scholar 

  16. T. Ellis, I.M. Davidson, and C. Budsworth:J. Iron Steel Inst., 1963, vol. 201, pp. 582–87.

    CAS  Google Scholar 

  17. K. Natesan and T.F. Kassner:Metall. Trans., 1973, vol. 4, pp. 2557–66.

    CAS  Google Scholar 

  18. R.P. Smith:Trans. TMS-AIME, 1966, vol. 236, pp. 1224–27.

    CAS  Google Scholar 

  19. S. Ando, Y. Okamoto, T. Shimoo, and H. Kimura:Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 441–48.

    Google Scholar 

  20. S. Ando, N. Kurose, T. Shimoo, and H. Kimura:J. Jpn. Inst. Met., 1985, vol. 49, pp. 737–45.

    CAS  Google Scholar 

  21. M. Hansen:Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1958, pp. 677–79.

    Google Scholar 

  22. S. Yamamoto, Y. Kawano, and Y. Murakami:Bull. Jpn. Inst. Met., 1972, vol. 11, pp. 903–11.

    CAS  Google Scholar 

  23. H.J. Grabke and G. Horz:Ann. Rev. Mater. Sci., 1977, vol. 7, pp. 155–78.

    Article  CAS  Google Scholar 

  24. H.J. Grabke, E.M. Muller, H.V. Speck, and G. Konczos:Steel Res., 1985, vol. 56, pp. 275–82.

    CAS  Google Scholar 

  25. S. Ando, T. Shimoo, and H. Kimura:J. Met. Finish. Soc. Jpn., 1988, vol. 39, pp. 75–80.

    CAS  Google Scholar 

  26. P. Kofstad:High Temperature Corrosion, Elsevier, London, 1988, pp. 223–24.

    Google Scholar 

  27. A.D. Dalvi and R. Sridhar:Can. Metall. Q., 1976, vol. 15, pp. 349–57.

    CAS  Google Scholar 

  28. M. Maki and I. Tamura:Bull. Jpn. Inst. Met., 1974, vol. 13, pp. 329–39.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, S., Kimura, H. Effect of oxide scale on carbon deposition on Fe-Ni alloys in carburizing gas. Metall Trans A 22, 2393–2399 (1991). https://doi.org/10.1007/BF02665005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665005

Keywords

Navigation