Clinical & Translational Oncology

, Volume 8, Issue 4, pp 231–241 | Cite as

Molecular alterations in the pathogenesis of endometrial adenocarcinoma. Therapeutic implications

  • Laura CerezoEmail author
  • Higinia Cárdenes
  • Helen Michael
Educational Series Blue Series


Molecular genetic evidence indicates that endometrial carcinoma likely develops as the result of a multistep process of oncogene activation and tumor suppressor gene inactivation. These molecular alterations appear to be specific for Type I (endometrioid) and Type II (non endometrioid) cancers. Type I cancers are characterized by mutation of PTEN, KRAS2, defects in DNA mismatch repair, as evidenced by the microsatellite instability phenotype, and a near diploid karyotype. Type II cancers often contain mutations of TP53 and Her-2/neu and are usually nondiploid. The clinical value of many of these molecular markers is now being tested and it may help to refine diagnosis and establish an accurate prognosis. Furthermore, some of these tumor biomarkers constitute the targets for emerging therapies. Transtuzumab against Her-2/neu and bevacizumab against VEGF overexpressing carcinomas are among the promising novel treatments. Additional translational research is needed to identify molecular and genetic alterations with potential for therapeutic interventions.

Key words

endometrial cancer molecular markers genetic alterations new targets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Potischman N, Hoover RN, Brinton LA, et al. Case-control study of endogenous steroid hormones and endometrial cancer. J Natl Cancer Inst. 1996;88:1127–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Lax SF. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch. 2004;444: 213–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Pral J. Prognostic parameters of endometrial carcinoma. Hum Pathol. 2004;35:649–62.CrossRefGoogle Scholar
  4. 4.
    Herrington CS. What we could do now: molecular pathology of gynaecological cancer. J Clin Pathol: Mol Pathol. 2001;54: 222–4.CrossRefGoogle Scholar
  5. 5.
    Ioachin E. Immunohistochemical tumour markers in endometrial ercinoma. Eur J Gyneacol Oncol. 2005;26:563–71.Google Scholar
  6. 6.
    Creasman WT. Prognostic significance of hormone receptors in endometrial cancer. Cancer. 1993;71:1467–70.PubMedGoogle Scholar
  7. 7.
    Halperin R, Zehavi S, Habler L, et al. Comparative immunohistochemical study of endometrioid and serous papillary carcinoma of endometrium. Eur J Gynaecol Oncol. 2001;22:122–6.PubMedGoogle Scholar
  8. 8.
    Mutter GL, Lin MC, Fitzgerald JT, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92:924–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Salvesen HB, Stefansson I, Kretzschmar EI, et al. Significance of PTEN alterations in endometrial carcinoma: A population-based study of mutations, promoter methylation and PTEN protein expression. Int J Oncol. 2004;25:1615–23.PubMedGoogle Scholar
  10. 10.
    Risinger JL, Berchuck A, Kohler M, et al. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993; 53:5100–3.PubMedGoogle Scholar
  11. 11.
    Ichikawa Y, Lemon SJ, Wang S, et al. Microsatellites instability and expression of hMSH2 or hMLH1 in normal and malignant endometrial and ovarian epithelium in hereditary nonpolyposis colorectal cancer family members. Cancer Genet Cytogenet. 1999;112:2–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Wijnen JT, Vasen HF, Khan PM, et al. Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med. 1998;339: 511–518.PubMedCrossRefGoogle Scholar
  13. 13.
    Goodfellow PJ, Buttin BM, Herzog TJ, et al. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. PNAS. 2003;100:5908–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Broaddus RR, Lynch HT, Chen LM, et al. Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer. 2006;106:87–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Miturski R, Bogusiewicz M, Ciotta C, et al. Mismatch repair genes and microsatellite instability as molecular markers for gynaecological cancer detection. Exp Biol Med. 2002;227:579–86.Google Scholar
  16. 16.
    MacDonald ND, Salvesen HB, Ryan A, et al. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60:1750–2.PubMedGoogle Scholar
  17. 17.
    Pijnenborg JM, Dam-de Veen GC, de Haan J, et al. Defective mismatch repair and the development of recurrent endometrial carcinoma. Gynecol Oncol. 2004; 94:550–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Levine RL, Cargile CB, Blazes MS, et al. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 1998;58:5254–8.Google Scholar
  19. 19.
    Vousden KH. Activation of the p53 tumor suppressor protein. Biochim Biophys Acta. 2002;1602:47–59.PubMedGoogle Scholar
  20. 20.
    Tashiro H, Isacson C, Levine R, et al. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol. 1997;150:177–85.PubMedGoogle Scholar
  21. 21.
    Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000; 88:814–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Ragni N, Ferrero S, Prefumo F, et al. The association between p53 expression, stage and histological features in endometrial cancer. Eur J Obstet Gynecol Reprod Biol. 2005;125:111–6.CrossRefGoogle Scholar
  23. 23.
    Geisler JP, Geisler HE, Wiermann MC, et al. p53 expression as a prognostic indicator of 5-year survival in endometrial cancer. Gynecol Oncol. 1999;74:468–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Pijnenborg JM, van de Broek L, Dam de Veen GC, et al. TP53 overexpression in recurrent endometrial carcinoma. Gynecol Oncol. 2006;100:597–404.CrossRefGoogle Scholar
  25. 25.
    Erdem O, Erdem M, Dursum A, et al. Angiogenesis, p53, and bcl-2 expression as prognostic indicators in endometrial cancer: comparison with tradicional clinicopathologic variables. Int J Gynecol Pathol. 2003;22:254–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Ohkouchi T, Sakuragi N, Watari H, et al. Prognostic significance of Bcl-2, p55 overexpression, and lymph node metastasis in surgically staged endometrial carcinoma. Am J Obstet Gynecol. 2002;187:353–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Saffari B, Bernstein L, Hong DC, et al. Association of p53 mutations and a codon 72 single nucleotide polymorphism with lower overall survival and responsiveness to adjuvant radiotherapy in endometrioid endometrial carcinomas. Int J Gynecol Cancer. 2005;15:952–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Alkushi A, Lim P, Coldman A, et al. Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol. 2004;25:129–37.CrossRefGoogle Scholar
  29. 29.
    McCluggage WG, Connolly LE, McGregor G, et al. A strategy for defining biologically relevant levels of p53 protein expression in clinical samples with reference to endometrial neoplasia. Int J Gynecol Pathol. 2005;24:507–12.CrossRefGoogle Scholar
  30. 30.
    Ellison DA, Maygarden SJ. Quantitative DNA analysis of fresh solid tumors by flow and image cytometric methods: a comparison using the Roche Pathology Workstation Image Analyzer. Mod Pathol. 1995;8:275–81.PubMedGoogle Scholar
  31. 31.
    Evans MP, Podratz KC. Endometrial neoplasia: prognostic significance of ploidy status. Clin Obstet Gynecol. 1996;59:696–706.CrossRefGoogle Scholar
  32. 32.
    Silverman MB, Roche PC, Kho RM, et al. Molecular and cytogenetic risk assessment in endometrial cancer. Gynecol Oncol. 2000;77:1–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Wimberger P, Hillemanns P, Kapsner T, et al. Evaluation of prognostic factors following flow-cytometric DNA analysis after cytokeratin labelling. II. Cervical and endometrial cancer. Anal Cell Pathol. 2002; 24:147–58.PubMedGoogle Scholar
  34. 34.
    Mariani A, Sebo TJ, Katzmann JA, et al. Pretreatment assessment of prognostic indicators in endometrial cancer. Am J Obstet Gynecol. 2000, p. 1535–44.Google Scholar
  35. 35.
    Mariani L, Conti L, Antenucci A, et al. Predictive value of cell kinetics in endometrial adenocarcinoma. Anticancer Res. 2000;20:3569–74.PubMedGoogle Scholar
  36. 36.
    Konski A, Domenico D, Tyrkus M, et al. Prognostic characteristics of surgical stage I endometrial adenocarcinoma. Int J Radiat Oncol Biol Phys. 1996;35:935–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Orbo A, Rydningen M, Straume B, Lysne S. Significance of morphometric, DNA cytometric features, and other prognostic markers on survival of endometrial cancer patients in northern Norway, Int J Gynecol Cancer. 2002;12:49–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Lundgren C, Auer G, Frankendal B, et al. Nuclear DNA content, proliferative activity, and p55 expression related to clinical and histopahologic features in endometrial carcinoma. Int J Gynecol Cancer. 2002; 12:110–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Baak JP, Suijders W, van Dierman B, et al. Prospective multicenter validation confirms the prognostic superiority of the endometrial carcinoma prognostic index in International Federation of Gynecology and Obstetrics stage 1 and 2 endometrial carcinoma. J Clin Oncol. 2003. p. 4214–21.Google Scholar
  40. 40.
    Santala M, Talvensaari-Mattila A. DNA ploidy is an independent prognostic indicador of overall survival in stage 1 endometrial endometrioid adenocarcinoma. Anticancer Res. 2005;23:5191–6.Google Scholar
  41. 41.
    Zaino RJ, Davis ATL, Ohlsson-Wilhelm BM, Brunetto VL. DNA content is an independent prognostic indicator in endometrial adenocarcinoma: a Gynecologic Oncology Group study. Int J Gynecol Pathol. 1998;17:312–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of HER-2/neu oncogene. Science. 1987;235: 177–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Hellstrom I, Goodman G, Pullman J, et al. Overexpression of HER-2/neu in ovarian carcinomas. Cancer Res. 2001;61:2420–3.PubMedGoogle Scholar
  44. 44.
    Rolitsky CD, Theil KS, McGaughy VR, et al. HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol. 1999;18:138–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Santin AD, Bellone S, Van Stedum S, et al. Determination of HER2/neu status in uterine serous papillary carcinoma: Comparative analysis of immunohistochemistry, and fluorescence in situ hybridisation. Gynecol Oncol. 2005;98:24–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Saffari B, Jones LA, el-Naggar A, et al. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 1995;55:5695–8.Google Scholar
  47. 47.
    Kohlberger P, Loesch A, Koelbl B, et al. Prognostic value of immunohistochemically detected HER-2/neu oncoprotein in endometrial cancer. Cancer Lett. 1996;98: 151–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Riben MW, Malfetano JH, Nazeer T, et al. Identification of HER-2/neu oncogene amplification by fluorescence in situ hybridization in stage I endometrial carcinoma. Mod Pathol. 1997;10:823–31.PubMedGoogle Scholar
  49. 49.
    Rasty G, Murray R, Lu L et al. Expression of HER-2/neu oncogene in normal, hyperplastic, and malignant endometrium. Ann Clin Lab Sci. 1998;28:138–43.PubMedGoogle Scholar
  50. 50.
    Cianciulli AM, Guadagni F, Marzano R, et al. HER-2/neu oncogene amplification and chromosome 17 aneusomy in endometrial carcinoma: correlation with oncoprotein expression and conventional pathological parameters. J Exp Clin Cancer Res. 2003; 22:265–71.PubMedGoogle Scholar
  51. 51.
    Santin AD, Bellone S, Gokden M, et al. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin Cancer Res. 2002;8:1271–9.PubMedGoogle Scholar
  52. 52.
    Slomovitz BM, Broaddus RR, Burke TW et al. Her-2/neu overexpression and 3126 amplification in uterine papillary serous carcinoma. J Clin Oncol. 2004;22:3132.CrossRefGoogle Scholar
  53. 53.
    Mariani A, Sebo TH, Katzmann JA, et al. HER-2/neu overexpression and hormone dependency in endometrial cancer: analysis of cohort and review of literature. Anticancer Res. 2005;25:2921–7.PubMedGoogle Scholar
  54. 54.
    Backe J, Gassel AM, Krebs S, et al. Immunohistochemically detected HER-2/neu expression and prognosis in endometrial carcinoma. Arch Gynecol Obstet. 1997;259:189–95.PubMedGoogle Scholar
  55. 55.
    Williams JA, Wang ZR, Parrish RS, et al. Fluorescence in situ hybridization analysis of HER-2/neu, c-myc, and p53 in endometrial cancer. Exp Mol Pathol. 1999;67: 135–43.PubMedCrossRefGoogle Scholar
  56. 56.
    Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res. 2001;21:4383–8.PubMedGoogle Scholar
  57. 57.
    Guidi AJ, Abu-Jawdeh G, Tognazzi K, Dvorak HF, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer. 1996;78: 454–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Fujimoto J, Ichigo S, Hirose R, et al. Expression pression of vascular endothelial growth factor (VEGF) and its mRNA in uterine endometrial cancers. Cancer Lett. 1998; 134:15–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Seki N, Kodama J, Hongo A, et al. Vascular endotelial growth factor and platelet-derived endothelial cell growth factor expression are implicated in the angiogenesis of endometrial cancer. Eur J Cancer. 2000;36:68–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Mazurek A, Pierzynski P, Kuc P, et al. Evaluation of angiogenesis, p-53 tissue protein expression and serum VEGF in patients with endometrial cancer. Neoplasma. 2004;51:193–7.PubMedGoogle Scholar
  61. 61.
    Salvesen HB, Iversen OE, Akslen LA, Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol. 1999;17:1382–90.PubMedGoogle Scholar
  62. 62.
    Ozuysal S, Bilgin T, Ozan H, et al. Angiogenesis in endometrial carcinoma: correlation with survival and clinicopathologic risk factors. Gynecol Onstet Invest. 2005; 55:175–7.Google Scholar
  63. 63.
    Ozalp S, Yalcin OT, Acikalin M, et al. Microvessel density (MVD) as a prognosticator in endometrial carcinoma. Eur J Gynaecol Oncol. 2003;24:305–8.PubMedGoogle Scholar
  64. 64.
    Giatromanolaki A, Sivridis E, Koukourakis MI, et al. Intratumoral angiogenesis: a new prognostic indicador for stage 1 endometrial adenocarcinomas? Oncol Res. 1999;11:205–12.PubMedGoogle Scholar
  65. 65.
    Sanseverino F, Santopietro R, Torricelli M, et al. PRb2/p130 and VEGF expression in endometrial carcinoma in relation to angiogenesis and histopathologic tumor grade. Cancer Biol The. 2006;5:84–8.CrossRefGoogle Scholar
  66. 66.
    Fine BA, Valente PT, Feinstein GI, Dey T. VEGF, fit-1, and KDR/flk-1 as prognostic indicators in endometrial carcinoma. Gynecol Oncol. 2000;76:33–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Toyoki H, Fujimoto F, Sato E, et al. Clinical implications of expresion of cyclooxigenase-2 related to angiogenesis in uterine endometrial cancers. Ann Oncol. 2005;16:51–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Fujiwaki R, Lida K, Kanasaki H, et al. Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Human Pathol. 2002;35: 213–9.CrossRefGoogle Scholar
  69. 69.
    Ferrandina G, Legge F, Ranelletti FO, et al. Cyclooxygenase-2 expression in endometrial carcinoma: correlation with clinicopathologic parameters and clinical outcome. Cancer. 2002;95:801–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Maxwell GL, Risinger JI, Álvarez AA, Barret JC, Berechuck A. Favorable survival associated with microsatellite instability in endometrioid cancerx. Obstet Gynecol. 2001;84:209–17.Google Scholar
  71. 71.
    Saegusa M, Hashimura M, Yoshida T, et al. Beta-catenin mutations and aberrant nuclear expresión during endometrial tumorigenesis. Br J Cancer. 2001;84:209–17.PubMedCrossRefGoogle Scholar
  72. 72.
    Lax SF, Kendaall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence o distinct molecular genetic pathways. Cancer. 2000; 88:814–24.PubMedCrossRefGoogle Scholar
  73. 73.
    Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Clear cell carcinoma of the endometrium is charactrized by a distinctive profile of p53, Ki-67, estrogen and progesterone receptor expression. Hum Pathol. 1998;29:551–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Khalifa MA, Mannel RS, Haraway SD, Walker J, Mi KW. Expression of EGFR, HER-2/neu, P53, and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas. Gynecol. Oncol. 1994;53:84–92.PubMedCrossRefGoogle Scholar
  75. 75.
    Risinger JI, Maxwell GL, Chandramouli GV, et al. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003;63:6–11.PubMedGoogle Scholar
  76. 76.
    Pallarés J, Martinez-Guitarte JL, Dolcet X, et al. Survivin expression in endometrial carcinoma: a tissue microarray study with correlation with PTEN and STAT-3. Int J Gynecol Pathol. 2003;24:247–53.CrossRefGoogle Scholar
  77. 77.
    Santin AD, Zhan F, Cane S, et al. Gene expression fingerprint of uterine serous papillary carcinoma: identification of novel molecular markers for uterine serous cancer diagnosis and therapy. Br J Cancer. 2005;92:1561–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Salvesen HB, Akslen LA. Molecular pathogenesis and prognostic factors in endometrial carcinoma. APMIS. 2002;110: 673–89.PubMedCrossRefGoogle Scholar
  79. 79.
    Von Minckwitz G, Loibl S, Brunnert K, et al. Adjuvant endocrine treatment with medroxyprogesterone acetate or tamoxifen in stage I and II endometrial cancer-a multi-centre, open, controlled prospectively randomised trial. Eur J Ca. 2002; 38:2265–71.CrossRefGoogle Scholar
  80. 80.
    Ota T, Yoshida M, Kimura M, Kinoshita K. Clinicopathologic study of uterine endometrial carcinoma in young women aged 40 years and younger. Int J Gynecol Cancer 2005;15:657–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Barakat RR, Bundy BN, Spirtos NM, Bell J, Mannel RS. Randomized double-blind trial of estrogen replacement therapy versus placebo in stage I or II endometrial cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2006;24:587–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Nygren P, Sorbye H, Osterlund P, Pfeiffer P, Targeted drugs in metastatic colorectal cancer with special emphasis on guidelines for the use of bevacizumab and cetuximab. Acta Oncol. 2005;44:203–17.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsujii M, Kawano S, Tsuji S et al. Cyclo-oxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;29: 705–16.CrossRefGoogle Scholar
  84. 84.
    Mujoo K, Maneval DC, Anderson SC, Gutterman JU. Adenoviral mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene. 1996;12:1617–25.PubMedGoogle Scholar
  85. 85.
    Ramondetta L, Mills GB, Burke TW, Wolf JK. Adenovirus-mediated expression of p55 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: Potential application of gene therapy to endometrial cancer. Clin Cancer Res. 2000;6:278–84.PubMedGoogle Scholar

Copyright information

© FESEO 2006

Authors and Affiliations

  • Laura Cerezo
    • 1
    Email author
  • Higinia Cárdenes
    • 2
  • Helen Michael
    • 3
  1. 1.Radiation Oncology Service. La Princesa University HospitalAutonoma UniversityMadridSpain
  2. 2.Department of Radiation OncologyIndiana University School of MedicineIndianapolis. EE.UU.
  3. 3.Department of PathologyIndiana University School of MedicineIndianapolis. EE.UU.

Personalised recommendations