Skip to main content
Log in

Biophysical studies and intracellular destabilization of pH-sensitive liposomes

  • Published:
Lipids

Abstract

We examined changes in membrane properties upon acidification of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes and evaluated their potential to deliver entrapped tracers in cultured macrophages. Membrane permeability was determined by the release of entrapped calcein or hydroxypyrene-1,3,6-trisulfonic acid (HPTS)-p-xylene-bis-pyridinium bromide (DPX); membrane fusion, by measuring the change in size of the liposomes and the dequenching of octadecylrhodamine-B fluorescence; and change in lipid organization, by31P nuclear magnetic resonance spectroscopy. Measurement of cell-associated fluorescence and confocal microscopy examination were made on cells incubated with liposomes loaded with HPTS or HPTS-DPX. The biophysical studies showed (i) a lipid reorganization from bilayer to hexagonal phase progressing from pH 8.0 to 5.0, (ii) a membrane permeabilization for pH<6.5, (iii) an increase in the mean diameter of liposomes for pH<6.0, and (iv) a mixing of liposome membranes for pH<5.7. The cellular studies showed (i) an uptake of the liposomes that were brought from pH 7.5–7.0 to 6.5–6.0 and (ii) a release of ∼15% of the endocytosed marker associated with its partial release from the vesicles (diffuse localization). We conclude that the permeabilization and fusion of pH-sensitive liposomes occur as a consequence of a progressive lipid reorganization upon acidification. These changes may develop intracellular after phagocytosis and allow for the release of the liposome content in endosomes associated with a redistribution in the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHEMS:

cholesterylhemisuccinate

DOPC:

dioleoylphosphatidylcholine

DOPE:

dioleoylphosphatidylethanolamine

DPX:

p-xylene

References

  1. Straubinger, R.M., Hong, K., Friend, D., and Papahadjopoulos, D. (1983) Endocytosis of Liposomes and Intracellular Fate of Encapsulated Molecules: Encounter with a Low pH Compartment After Internalization in Coated Vesicles,Cell 32, 1069–1079.

    Article  PubMed  CAS  Google Scholar 

  2. Connor, J., Yatvin, M.B., and Huang, L. (1984) pH-Sensitive Liposomes: Acid-Induced Liposome Fusion,Proc. Natl. Acad. Sci. USA 81, 1715–1718.

    Article  PubMed  CAS  Google Scholar 

  3. Chu, C.J., and Szoka, F.C. (1994) pH-Sensitive Liposomes,J. Liposome Res. 4, 361–395.

    Google Scholar 

  4. Chu, C.J., Dijkstra, J., Lai, M.Z., Hong, K., and Szoka, F.C. (1990) Efficiency of Cytoplasmic Delivery by pH-Sensitive Liposomes to Cells in Culture,Pharm. Res. 7, 824–834.

    Article  PubMed  CAS  Google Scholar 

  5. Connor, J., and Huang, L. (1986) pH-Sensitive Immunoliposomes as an Efficient and Target-Specific Carrier for Antitumor Drugs,Cancer Res. 46, 3431–3435.

    PubMed  CAS  Google Scholar 

  6. Lutwyche, P., Cordeiro, C., Wiserman, D.J., St. Louis, M., Uh, M., Hope, M.J., and Finlay, B.B. (1998) Intracellular Delivery and Intracellular Activity of Gentamicin Encapsulated in pH-Sensitive Liposomes,Antimicrob. Agents Chemother. 42, 2511–2520.

    PubMed  CAS  Google Scholar 

  7. Couvreur, P., Fattal, E., Malvy, C., and Dubernet, C. (1997) pH-Sensitive Liposomes: an Intelligent System for the Delivery of Antisense Oligonucleotides,J. Liposome Res. 7, 1–18.

    Article  CAS  Google Scholar 

  8. Nair, S., Zhou, F., Reddy, R., Huang, L., and Rouse, B.T. (1992) Soluble Proteins Delivered to Dendritic Cellsvia pH-Sensitive Liposomes Induce Primary Cytotoxic T Lymphocyte Responsesin vitro, J. Exp. Med. 175, 609–612.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, C.Y., and Huang, L. (1987) Plasmid DNA Adsorbed to pH-Sensitive Liposomes Efficiently Transforms the Target Cells,Biochem. Biophys. Res. Commun. 147, 980–985.

    Article  PubMed  CAS  Google Scholar 

  10. Seddon, J.M. (1990) Structure of the Inverted Hexagonal (HII) Phase, and Nonlamellar Phase Transitions of Lipids,Biochim. Biophys. Acta 1031, 1–69.

    PubMed  CAS  Google Scholar 

  11. Ellens, H., Bentz, J., and Szoka, F.C. (1984) pH-Induced Destabilization of Phosphatidylethanolamine-Containing Liposomes: Role of Bilayer Contact,Biochemistry 23, 1532–1538.

    Article  PubMed  CAS  Google Scholar 

  12. Düzgünes, N., Straubinger, R.M., Baldwin, P.A., Friend, D.S., and Papahadjopoulos, D. (1985) Proton-Induced Fusion of Oleic-Phosphatidylethanolamine Liposomes,Biochemistry 24, 3091–3098.

    Article  PubMed  Google Scholar 

  13. Liu, D., and Huang, L. (1989) Small, but Not Large, Unilamellar Liposomes Composed of Dioleoylphosphatidylethanolamine and Oleic Acid Can Be Stabilized by Human PlasmaBiochemistry 28, 7700–7707.

    Article  PubMed  CAS  Google Scholar 

  14. Tari, A.M., Fuller, N., Bom, L.T., Collins, D., Rand, P., and Huang, L. (1994) Interactions of Liposome Bilayers Composed of 1,2-Diacyl-3-succinylglycerol with Protons and Divalent Cations,Biochim. Biophys. Acta 1192, 253–262.

    Article  PubMed  CAS  Google Scholar 

  15. Collins, D., Maxfield, F., and Huang, L. (1989) Immunoliposomes with Different Acid Sensitivities as Probes for the Cellular Endocytic Pathway,Biochim. Biophys. Acta 987, 47–55.

    Article  PubMed  CAS  Google Scholar 

  16. Straubinger, R.M., Düzgünes, N., and Papahadjopoulos, D. (1985) pH-Sensitive Liposomes Mediate Cytoplasmic Delivery of Encapsulated Macromolecules,FEBS Lett. 179, 148–154.

    Article  PubMed  CAS  Google Scholar 

  17. Kono, K., Igawa, T., and Takagishi, T. (1997) Cytoplasmic Delivery of Calcein Mediated by Liposomes Modified with a pH-Sensitive Poly(ethylene Glycol) Derivative,Biochim. Biophys. Acta 1325, 143–154.

    Article  PubMed  CAS  Google Scholar 

  18. Lai, M.Z., Vail, W.J., and Szoka, F.C. (1985) Acid- and Calcium-Induced Structural Changes in Phosphatidylethanolamine Membranes Stabilized by Cholesterol Hemisuccinate,Biochemistry 24, 1654–1661.

    Article  PubMed  CAS  Google Scholar 

  19. Hope, M.J., Bally, M.B., Webb, G., and Cullis, P.R. (1985) Production of Large Unilamellar Vesicles by a Rapid Extrusion Procedure. Characterization of Size Distribution, Trapped Volume and Ability to Maintain a Membrane Potential,Biochim. Biophys. Acta 812, 55–65.

    Article  CAS  Google Scholar 

  20. Van Bambeke, F., Mingeot-Leclercq, M.P., Schanck, A., Brasseur, R., and Tulkens, P.M. (1993) Alterations in Membrane Permeability Induced by Aminoglycoside Antibiotics: Studies on Liposomes and Cultured Cells,Eur. J. Pharmacol. 247, 155–168.

    Article  PubMed  Google Scholar 

  21. Grit, M., Zuidam, N.J., Underberg, W.J.M., and Crommelin, D.J.A. (1993) Hydrolysis of Partially Saturated Egg Phosphatidylcholine in A queous Liposome Dispersions and the Effect of Cholesterol Incorporation on Hydrolysis Kinetics,J. Pharm. Pharmacol. 45, 490–495.

    PubMed  CAS  Google Scholar 

  22. Weinstein, J.N., Yoshikami, S., Henkart, P., Blumenthal, R., and Hagins, W.A. (1977) Liposome-Cell Interaction: Transfer and Intracellular Release of a Trapped Fluorescent Marker,Science 195, 489–491.

    Article  PubMed  CAS  Google Scholar 

  23. Straubinger, R.M., Papahadjopoulos, D., and Hong, K. (1990) Endocytosis and Intracellular Fate of Liposomes Using Pyranine as a Probe,Biochemistry 29, 4929–4939.

    Article  PubMed  CAS  Google Scholar 

  24. Van Bambeke, F., Tulkens, P.M., Brasseur, R., and Mingeot-Leclercq, M.P. (1995) A minoglycoside Antibiotics Induce A g-gregation but Not Fusion of Negatively-Charged Liposomes,Eur. J. Pharmacol. 289, 321–333.

    Article  PubMed  Google Scholar 

  25. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J. (1984) Fluorescence Method for Measuring the Kinetics of Fusion Between Biological Membranes,Biochemistry 23, 5675–5681.

    Article  PubMed  CAS  Google Scholar 

  26. Mazer, N.A., Carey, M.C., Kwasnick, R.F., and Benedek, G.B. (1979) Quasi-elastic Light Scattering Studies of A queous Biliary Lipid Systems. Size, Shape and Thermodynamics of Bile Salt Micelles,Biochemistry 18, 3064–3075. Tumbling and Lateral Dittusion on Phosphatidylcholine Model Membrane31P-NMR Lineshapes,Biochim. Biophys. Acta 603, 63–69.

    Article  PubMed  CAS  Google Scholar 

  27. Schanck, A. (1992) A Method for Determining the Proportions of Different Phases in Hydrated Phospholipids by31P Nuclear Magnetic Resonance (NMR) Spectroscopy,Appl. Spectrosc. 46, 1435–1437.

    Article  CAS  Google Scholar 

  28. Snyderman, R., Pike, M.C., Fischer, D.G., and Koren, H.S. (1977) Biologic and Biochemical Activities of Continuous Macrophage Cell Lines P338 D1 and J 774 1,J. Immunol. 119, 2060–2066.

    PubMed  CAS  Google Scholar 

  29. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent,J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  30. Straubinger, R.M. (1993) pH-Sensitive Liposomes for Delivery of Macromolecules into Cytoplasm of Cultured Cells,Methods Enzymol. 194, 28–36.

    Google Scholar 

  31. Ellens, H., Bentz, J., and Szoka, F.C. (1985) H+ and Ca2+ Fusion and Destabilization of Liposomes,Biochemistry 24, 3099–3106.

    Article  PubMed  CAS  Google Scholar 

  32. Van Bambeke, F., Mingeot-Leclercq, M.P., Brasseur, R., Tulkens, P.M., and Schanck, A. (1996) Aminoglycoside Antibiotics Prevent the Formation of Non-Bilayer Structures in Negatively-Charged Membranes Comparative Studies Using Fusogenic [bis-(beta-diethylaminoethylether)hexestrol] and Aggregating (spermine) Agents,Chem. Phys. Lipids 79, 123–135.

    Article  PubMed  Google Scholar 

  33. Mingeot-Leclercq, M.P., Schanck, A., Ronveaux-Dupal, M.F., Deleers, M., Brasseur, R., Ruysschaert, J.M., Laurent, G., and Tulkens, P.M. (1989) Ultrastructural, Physico-Chemical and Conformational Study of the Interactions of Gentamicin and bis(beta-diethylaminoethylether)hexestrol with Negatively-Charged Phospholipid Bilayers,Biochem. Pharmacol. 38, 729–741.

    Article  PubMed  CAS  Google Scholar 

  34. Hubbard, A.L. (1989) Endocytosis,Curr. Opin. Cell Biol. 1, 675–683.

    Article  PubMed  CAS  Google Scholar 

  35. Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A., and O'Brien, D.F. (1998) Liposome-Cell Interactionsin vitro: Effect of Liposome Surface Charge on the Binding and Endocytosis of Conventional and Sterically Stabilized Liposomes,Biochemistry 37, 12875–12883.

    Article  PubMed  CAS  Google Scholar 

  36. Gan, B.S., Krump, E., Shrode, L.D., and Grinstein, S. (1998) Loading Pyraninevia Purinergic Receptors or Hypotonic Stress for Measurement of Cytosolic pH by Imaging,Am. J. Physiol. Cell Physiol. 44, C1158-C1166.

    Google Scholar 

  37. Daleke, D.L., Hong, K., and Papahadjopoulos, D. (1990) Endocytosis of Liposomes by Macrophages: Binding, Acidification and Leakage of Liposomes Monitored by a New Fluorescence Assay,Biochim. Biophys. Acta 1024, 352–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fran¢oise Van Bambeke.

About this article

Cite this article

Van Bambeke, F., Kerkhofs, A., Schanck, A. et al. Biophysical studies and intracellular destabilization of pH-sensitive liposomes. Lipids 35, 213–223 (2000). https://doi.org/10.1007/BF02664772

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664772

Keywords

Navigation