Skip to main content
Log in

Incorporation of polyunsaturated fatty acids into CT-26, a transplantable murine colonic adenocarcinoma

  • Published:
Lipids

Abstract

Previous studies in our laboratory have shown that marine oils, with high levels of eicosapentaenoic (EPA, 20∶5n−3) and docosahexaenoic acids (DHA, 22∶6n−3), inhibit the growth of CT-26, a murine colon carcinoma cell line, when implanted into the colons of male BALB/c mice. Anin vitro model was developed to study the incorporation of polyunsaturated fatty acids (PUFA) into CT-26 cells in culture. PUFA-induced changes in the phospholipid fatty acid composition and the affinity with which different fatty acids enter the various phospholipid species and subspecies were examined. We found that supplementation of cultured CT-26 cells with either 50 μM linoleic acid (LIN, 18∶2n−6), arachidonic acid (AA, 20∶4n−6), EPA, or DHA significantly alters the fatty acid composition of CT-26 cells. Incorporation of these fatty acids resulted in decreased levels of monounsaturated fatty acids, while EPA and DHA also resulted in lower levels of AA. While significant elongation of both AA and EPA occurred, LIN remained relatively unmodified. Incorporation of radiolabeled fatty acids into different phospholipid species varied significantly. LIN was incorporated predominantly into phosphatidylcholine and had a much lower affinity for the ethanolamine phospholipids. DHA had a higher affinity for plasmenylethanolamine (1-O-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) than the other fatty acids, while EPA had the highest affinity for phosphatidylethanol-amine (1,2-diacyl-sn-glycero-3-phosphoethanolamine). These results demonstrate that,in vitro, significant differences are seen between the various PUFA in CT-26 cells with respect to metabolism and distribution, and these may help to explain differences observed with respect to their effects on tumor growth and metastasis in the transplantable model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

BSA:

bovine serum albumin

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

FAME:

fatty acid methyl ester

FBS:

fetal bovine serum

LIN:

linoleic acid

PUFA:

polyunsaturated fatty acid

TLC:

thin-layer chromatography

References

  1. Reddy, B.S., and Maruyama, H. (1986) Effect of Dietary Fish Oil on Azoxymethane-Induced Colon Carcinogenesis in Male F344 Rats,Cancer Res. 46, 3367–3370.

    PubMed  CAS  Google Scholar 

  2. Latham, P., Lund, E.K., and Johnson, I.T. (1999) Dietary n-3 PUFA Increases the Apoptotic Response to 1,2-Dimethylhy-drazine, Reduces Mitosis and Suppresses the Induction of Carcinogenesis in the Rat Colon,Carcinogenesis 20, 645–650.

    Article  PubMed  CAS  Google Scholar 

  3. Reddy, B.S., Burill, C., and Rigotty, J. (1991) Effect of Diets High in Omega-3 and Omega-6 Fatty Acids on Initiation and Postinitiation Stages of Colon Carcinogenesis,Cancer Res. 51, 487–491.

    PubMed  CAS  Google Scholar 

  4. Caygill, C.P., and Hill, M.J. (1995) Fish n-3 Fatty Acids and Human Colorectal and Breast Cancer Mortality,Eur. J. Cancer Prev. 4, 329–332.

    Article  PubMed  CAS  Google Scholar 

  5. Cannizzo, F., and Broitman, S.A. (1989) Postpromotional Effects of Dietary Marine or Safflower Oils on Large Bowel or Pulmonary Implants of CT-26 in Mice,Cancer Res. 49, 4289–4294.

    PubMed  CAS  Google Scholar 

  6. Iigo, M., Nakagawa, T., Ishikawa, Y., Asamoto, M., Kazawa, K., Araki, E., and Tsuda, H. (1997) Inhibitory Effects of Docosahexaenoic Acid on Colon Carcinoma 26 Metastasis to the Lung,Br. J. Cancer 75, 650–655.

    PubMed  CAS  Google Scholar 

  7. Reddy, B.S., (1992) Dietary Fat and Colon Cancer: Animal Model Studies,Lipids 27, 807–813.

    Article  PubMed  CAS  Google Scholar 

  8. Jurkowski, J.J., and Cave, W.T., Jr. (1983) Dietary Effects of Menhaden Oil on the Growth and Membrane Lipid Composition of Rat Mammary Tumors,J. Natl. Cancer Inst. 74, 1145–1150.

    Google Scholar 

  9. Lindner, M.A. (1991) A Fish Oil Diet Inhibits Colon Cancer in Mice,Nutr. Cancer 15, 1–11.

    PubMed  CAS  Google Scholar 

  10. Marshall, L.A., and Jonston, P.V. (1982) Modulation of Tissue Prostaglandin Synthesizing Capacity by Increased Ratios of Dietary Alpha-Linolenic Acid to Linoleic Acid,Lipids 17, 905–913.

    Article  PubMed  CAS  Google Scholar 

  11. Bilsen, M.V., and Van der Vusse, G.J. (1995) Phospholipase-A2-Dependent Signalling in the Heart,Cardiovasc. Res. 30, 518–519.

    Article  PubMed  Google Scholar 

  12. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids,J. Biol. Chem. 226, 497–507.

    PubMed  CAS  Google Scholar 

  13. Esko, J., Nishijima, M., and Raetz, C.R.H. (1982) Animal Cells Dependent on Exogenous Phosphatidylcholine for Membrane Biogenesis,Proc. Natl. Acad. Sci. USA 79, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  14. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification,Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  15. Esko, J.D., and Raetz, C.R.H. (1980) Mutants of Chinese Hamster Ovary Cells with Altered Membrane Phospholipid Composition. Replacement of Phosphatidylinositol by Phosphatidylglycerol in a Myo-inositol Auxotroph,J. Biol. Chem. 255, 4474–4480.

    PubMed  CAS  Google Scholar 

  16. Chen, Y.Q., Liu, B., Tang, D.G., and Honn, K.V. (1992) Fatty Acid Modulation of Tumor Cell-Platelet-Vessel Wall Interaction,Cancer Metastasis Rev. 11, 389–409

    Article  PubMed  CAS  Google Scholar 

  17. Rose, D.P., and Hatala, M.A. (1994) Dietary Fatty Acids and Breast Cancer Invasion and Metastasis,Nutr. Cancer 21, 103–111.

    Article  PubMed  CAS  Google Scholar 

  18. Kort, W.J., Weijma, I.M., Bijma, A.M., van Schalkwijk, W.P., Vergroesen, A.J., and Westbroek, D.L. (1987) Omega-3 Fatty Acids Inhibiting the Growth of a Transplantable Rat Mammary Adenocarcinoma,J. Natl. Cancer Inst. 79, 593–599.

    PubMed  CAS  Google Scholar 

  19. Connolly, J.M., and Rose, D.P. (1993) Effects of Fatty Acids on Invasion Through Reconstituted Basement Membrane (‘Matrigel’) by a Human Breast Cancer Cell Line,Cancer Lett. 75, 137–142.

    Article  PubMed  CAS  Google Scholar 

  20. Rose, D.P., and Connolly, J.M. (1991) Effects of Fatty Acids and Eicosanoid Synthesis Inhibitors on the Growth of Two Human Prostate Cancer Cell Lines,Prostate 18, 243–254.

    Article  PubMed  CAS  Google Scholar 

  21. Mengeaud, V., Nano, J.L., Fournel, S., and Rampal, P. (1992) Effects of Eicosapentaenoic Acid, Gamma-linolenic Acid and Prostaglandin E1 on Three Human Colon Carcinoma Cell Lines,Prostaglandins Leukotrienes Essen, Fatty Acids 47, 313–319.

    Article  CAS  Google Scholar 

  22. Sobajima, T., Tamiya-Koizumi, K., Ishihara, H., and Kojima, K. (1986) Effects of Fatty Acid Modification of Ascites Tumor Cells on Pulmonary Metastasis in Rat,Jpn. J. Cancer Res. 77, 657–663.

    PubMed  CAS  Google Scholar 

  23. Fulton, A.M., and Hepner, G.H. (1985) Relationships of Prosta-glandin E and Natural Killer Sensitivity to Metastatic Potential in Murine Mammary Adenocarcinomas,Cancer Res. 45, 4779–4784.

    PubMed  CAS  Google Scholar 

  24. Rosenthal, M.D. (1987) Fatty Acid Metabolism of Isolated Mammalian Cells,Prog. Lipid Res. 26, 87–124.

    Article  PubMed  CAS  Google Scholar 

  25. Tebbey, P.W., and Butke, T.M. (1984) Arachidonic Acid Regulates Unsaturated Fatty Acid Synthesis in Lymphocytes by Inhibiting Stearoyl-CoA Desaturase Gene Expression,Biochim. Biophys. Acta 796, 205–217.

    Google Scholar 

  26. Banerjee, N., and Rosenthal, M.D. (1986) Elongation of C20 Polyunsaturated Fatty Acids by Human Skin Fibroblasts,Biochim. Biophys. Acta 878, 404–411.

    PubMed  CAS  Google Scholar 

  27. Hatala, M.A., Rayburn, J., and Rose, D.P. (1994) Comparison of Linoleic Acid and Eicosapentaenoic Acid Incorporation into Human Breast Cancer Cells,Lipids 29, 831–837.

    Article  PubMed  CAS  Google Scholar 

  28. Ford, D.A., and Gross, R.W. (1994) The Discordant Rates ofsn-1 Aliphatic Chain and Polar Head Group Incorporation into Plasmalogen Molecular Species Demonstrate the Fundamental Importance of Polar Head Group Remodeling in Plasmalogen Metabolism in Rabbit Myocardium,Biochemistry 33, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  29. Gaposchkin, D.P., and Zoeller, R.A. (1999) Plasmalogen Status Influences Docosahexaenoic Acid Levels in a Macrophage Cell Line: Insights Using Ether Lipid-Deficient Variants,J. Lipid Res. 40, 495–503.

    PubMed  CAS  Google Scholar 

  30. Horrocks, L.A., and Sharma, M. (1982) Plasmalogens andO-Alkyl Glycerophospholipids, inPhospholipids (Hawthorne, J.N., and Ansell, G.B., eds.), pp. 51–93, Elsevier Biomedical Press, New York.

    Google Scholar 

  31. Blank, M.L., Smith, Z.L., Joseph Lee, Y., and Snyder, F. (1989) Effects of Eicosapentaenoic and Docosahexaenoic Acid Supplements on Phospholipid Composition and Plasmalogen Biosynthesis in P388D1 Cells,Arch. Biochem. Biophys. 269, 603–611.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson, D.R., Xu, L., Knoell, T., Tateno, S., and Olesiak, W. (1993) Modification of Spleen Phospholipid Fatty Acid Composition by Dietary Fish Oil and by n-3 Fatty Acid Ethyl Esters,J. Lipid Res. 34, 1423–1434.

    PubMed  CAS  Google Scholar 

  33. Blank, M.L., Smith, Z.L., Cress, E.A., and Snyder, F. (1994) Molecular Species of Ethanolamine Plasmalogens and Transacylase Activity in Rat Tissues Are Altered by Fish Oil Diets,Biochim. Biophys. Acta 1214, 295–302.

    PubMed  Google Scholar 

  34. Thomas, S.E., Byers, D.M., Palmer, F.B., Spence, M.W., and Cook, H.W. (1990) Incorporation of Polyunsaturated Fatty Acids into Plasmalogens, Compared to Other Phospholipids of Cultured Glioma Cells, Is More Dependent on Chain Length Than on Selectivity Between (n−3) and (n−6) Families,Biochim. Biophys. Acta 1044, 349–356.

    PubMed  CAS  Google Scholar 

  35. Bennett, A., Houghton, J., Leaper, D.J., and Stamford, I.F. (1978) Tumor Growth and Response to Treatment: Beneficial Effect of the Prostaglandin Synthesis Inhibitor Flurbiprofen,Br. J. Pharmacol. 63, 356P-357P.

    PubMed  CAS  Google Scholar 

  36. Lunch, N.R., and Salomon, J-C. (1979) Tumor Growth Inhibition and Potentiation of Immunotherapy by Indomethacin in mice,J. Natl. Cancer Inst. 62, 117–121.

    Google Scholar 

  37. Farooqui, A.A., Yang, H.C., and Horrocks, L.A. (1995) Plasmalogens, Phospholipases A2 and Signal Transduction,Brain Res. Rev. 21, 152–162.

    Article  PubMed  CAS  Google Scholar 

  38. Favreliere, S., Barrier, L., Durand, G., Chalon, S., and Tallineau, C. (1998) Chronic Dietary n−3 Polyunsaturated Fatty Acids Deficiency Affects the Fatty Acid Composition of Plasmenylethano-lamine and Phosphatidylethanolamine Differently in Rat Frontal Cortex, Striatum, and Cerebellum,Lipids 33, 401–407.

    Article  PubMed  CAS  Google Scholar 

  39. Dueck, D.A., Chan, M., Tran, K., Wong, J.T., Jay, F.T., Littman, C., Stimpson, R., and Choy, P.C. (1996) The Modulation of Choline Phosphoglyceride Metabolism in Human Colon Cancer,Mol. Cell. Biochem. 162, 97–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selwyn A. Broitman.

About this article

Cite this article

Gaposchkin, D.P., Zoeller, R.A. & Broitman, S.A. Incorporation of polyunsaturated fatty acids into CT-26, a transplantable murine colonic adenocarcinoma. Lipids 35, 181–186 (2000). https://doi.org/10.1007/BF02664768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664768

Keywords

Navigation