Skip to main content
Log in

Investigation of deformation field and hydrogen partition around crack tip in fcc single crystal

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ fracture experiments and measurements of the hydrogen distribution in the immediate vicinity of the crack tip were used to investigate the effects of hydrogen on a face-centered cubic (fcc) single-crystal fracture process. The techniques used were scanning electron microscopy (SEM), a scribed-grid method with a computer-controlled data acquisition system, and ion microprobe mass analysis (IMMA). It was observed that the general features of plastic deformation are similar in both charged and uncharged hydrogen samples under mixed-mode loading conditions, and in both cases the strain field ahead of the crack tip is best expressed by an exponential equation. There are also differences. Hydrogen easily enlarges the crack tip opening displacement (CTOD) under a lower threshold stress-intensity factor, inhomogeneously increases the localized plastic deformation, and markedly enhances the steepness of strain curve near the crack tip. Internal hydrogen increases plasticity in the immediate vicinity of the crack tip but its effective range is smaller when compared with external hydrogen effects. The results show that two peaks of hydrogen concentration appear ahead of the crack tip: one peak is in the immediate vicinity of the crack tip and another peak is located some distance from the crack tip. It is concluded that the distribution of dissolved hydrogen with two peaks around the crack tip corresponds to the distribution of strain and stress fields, respectively, due to the interaction of hydrogen with dislocation and hydrostatic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and Michael Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985.

    Google Scholar 

  2. Hydrogen and Materials, Proc. 4th Int. Conf., Pierre Azou and Nanping Chen, eds., Beijing, China, May 9-13, 1988, pp. 1-15.

  3. J.P. Hirth and H.H. Johnson:Corrosion, 1976, vol. 32, pp. 3–25.

    CAS  Google Scholar 

  4. J.P. Hirth:Metall. Trans. A, 1980, vol. 11 A, pp. 861–90.

    Google Scholar 

  5. H.H. Johnson:Metall. Trans. A, 1988, vol. 19A, pp. 2371–87.

    CAS  Google Scholar 

  6. R.A. Oriani:Ann. Rev. Mater. Sci., 1978, vol. 8, pp. 327–57.

    Article  CAS  Google Scholar 

  7. E. Sirois and H.K. Birnbaum:Acta Metall., 1992, vol. 40, pp. 1377–85.

    Article  CAS  Google Scholar 

  8. H. Matsui, H. Kimura, and S. Moriya:Mater. Sci. Eng., 1979, vol. 40, pp. 207–16.

    Article  CAS  Google Scholar 

  9. S. Moriya, H. Matsui, and H. Kimura:Mater. Sci. Eng., 1979, vol. 40, pp. 217–25.

    Article  CAS  Google Scholar 

  10. H. Matsui, H. Kimura, and Akihiko Kimura:Mater. Sci. Eng., 1979, vol. 40, pp. 227–34.

    Article  CAS  Google Scholar 

  11. CD. Beachem:Metall. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  12. S.P. Lynch:Met. Forum., 1979, vol. 2 (3), pp. 189–200.

    CAS  Google Scholar 

  13. J. Eastman, F. Heubaum, T. Matsumoto, and H.K. Birnbaum:Acta Metall., 1982, vol. 30, pp. 1579–86.

    Article  CAS  Google Scholar 

  14. T. Tabata and H.K. Birnbaum:Scripta Metall., 1984, vol. 18, pp. 231–36.

    Article  CAS  Google Scholar 

  15. I.M. Robertson and H.K. Birnbaum:Acta Metall., 1986, vol. 34, pp. 353–66.

    Article  CAS  Google Scholar 

  16. G.M. Bond, I.M. Robertson, and H.K. Birnbaum:Acta Metall., 1988, vol. 36, pp. 2193–97.

    Article  CAS  Google Scholar 

  17. D.S. Shih, I.M. Robertson, and H.K. Birnbaum:Scripta Metall., 1988, vol. 36, pp. 111–16.

    CAS  Google Scholar 

  18. H.H. Johnson, J.G. Morlet, and A.R. Troiano:Trans TMS-AIME, 1958, vol. 212, pp. 528–36.

    CAS  Google Scholar 

  19. R.A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, NACE-1, NACE, Houston, TX, 1969, pp. 32–49.

    Google Scholar 

  20. Shinichiro Ochiai, Schoichi Yoshinaga, and Yoneo Kikuta.Trans. Iron Steel Inst. Jpn., 1975, vol. 15, pp. 503–07.

    CAS  Google Scholar 

  21. S. Yamakawa and H. Watanabe:Metallic Corrosion, Int. Congress, Toronto, 1984, pp. 254-58.

  22. W.W. Gerberich, T. Livne, X.-F. Chen, and M. Kaczorowski:Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  23. W.Y. Chu, CM. Hsiao, and S.Q. Li:Scripta Metall., 1979, vol. 13, pp. 1057–67.

    Article  CAS  Google Scholar 

  24. T.D. Lee, T. Goldenberg, and J.P. Hirth:Fracture, 1977, D.M.R. Taplin, ed., Pergamon, Oxford, 1977, vol. 2, pp. 243–48.

    Google Scholar 

  25. J. Eastman, F. Heubaum, T. Matsumoto, and H.K. Birnbaum:Scripta Metall., 1981, vol. 15, pp. 1035–39.

    Google Scholar 

  26. J.R. Rice and G.F. Rosengren:J. Mech. Phys. Solid., 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  27. D.R. Williams, D.L. Davidson, and J. Lankford:Exp. Mech., 1980, vol. 20, pp. 134–39.

    Article  Google Scholar 

  28. P.D. Hicks and C.J. Altstetter:Metall. Trans. A, 1992, vol. 23A, pp. 237–49.

    CAS  Google Scholar 

  29. J.P. Hirth and B. Carnahan:Acta Metall., 1978, vol. 26, pp. 1795–1803.

    Article  CAS  Google Scholar 

  30. J.P. Hirth:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloy, NACE-5, R.W. Stachle, J. Hochmann, R.D. McCright, and J.E. Slater, eds., NACE, Houston, TX, 1977, pp. 1–10.

    Google Scholar 

  31. J.R. Griffiths and D.R.J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  32. J.R. Rice and M.A. Johnson:Inelastic Behavior of Solids, M.F. Kanninien, ed., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  33. R.M. McMeeking:J. Mech. Phys. Solid, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

  34. S. Aoki and Y. Miyano:Int. J. Fract., 1984, vol. 24, p. 267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Shiozawa, K., Gu, J. et al. Investigation of deformation field and hydrogen partition around crack tip in fcc single crystal. Metall Mater Trans A 26, 731–739 (1995). https://doi.org/10.1007/BF02663922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663922

Keywords

Navigation