Skip to main content
Log in

Temperature-dependence mechanism of tensile strength of Si-Ti-C-0 Fiber-Aluminum matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanism for the temperature dependence of the tensile strength of unidirectional hybrid type Si-Ti-C-O (Tyranno) fiber-reinforced aluminum matrix composite, in which SiC-particles are dispersed in the matrix, is discussed, focusing on the temperature dependencies of the stress concentration arising from broken fibers and critical length and their influences on the composite strength, by means of a shear-lag analysis and a Monte Carlo simulation. The main results are summarized as follows. The softening of the matrix at high temperatures raises the composite strength from the point of decrease in stress concentration, but on the other hand, it also reduces strength from the point of increase in critical length, which reduces the stress-carrying capacity of broken fibers over a long distance. The reason why the measured strength of composite decreased with increasing temperature could be attributed to the predominacy of the latter effect over the former one. The results of the simulation indicated that the hybridization of the composites improved room-temperature and high-temperature strengths through the strengthening of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sakamono:Bull. Jpn. Inst. Met., 1988, vol. 27, pp. 860–68.

    Google Scholar 

  2. J. Krestchmer:Mater. Sci. Technol, 1988, vol. 4, pp. 757–67.

    Google Scholar 

  3. T. Yamamura, T. Huruhashi, M. Kimoto, T. Ishikawa, M. Shibuya, and T. Iwai:High Tech. Ceramics (Proc. 6th Int. Meeting on Modern Ceramics Technologies, Milan, Italy, 1986), P. Vincenzini, ed., Elsevier Science Publishers, Amsterdam, 1987, pp. 737–46.

    Google Scholar 

  4. Y. Waku, T. Yamamoto, M. Suzuki, M. Tokuse, T. Nagasawa, and T. Nishi:34th Int. SAMPE Symp., 1989, vol. 34, pp. 2278–88.

    CAS  Google Scholar 

  5. Y. Imai, H. Ichikawa, and T. Ishikawa:Mechanical Properties and Application of MMC, Proc. Japan—France Workshop on MMC, Paris, S. Nishijima and C. Bathias, eds., The Science and Technology Agency, Tokyo, Japan, 1992, pp. 37–47.

    Google Scholar 

  6. S. Ochiai and K. Osamura:J. Mater. Sci., 1988, vol. 23, pp. 886–93.

    Article  Google Scholar 

  7. C. Zweben:Eng. Frac. Mech., 1974, vol. 6, pp. 1–10.

    Article  Google Scholar 

  8. S. Ochiai, K. Abe, and K. Osamura:Z. Metallkd., 1985, vol. 76, pp. 299–306.

    Google Scholar 

  9. S. Ochiai and K. Osamura:J. Mater. Sci., 1989, vol. 24, pp. 3865–72.

    Article  CAS  Google Scholar 

  10. S. Ochiai, K. Osamura, and K. Abe:Z. Metallkd., 1985, vol. 76, pp. 402–08.

    CAS  Google Scholar 

  11. S. Ochiai and K. Osamura:Metall. Trans. A, 1990, vol. 21 A, pp. 971–77.

    Google Scholar 

  12. K. Matsunaga, S. Ochiai, K. Osamura, Y. Yaku, and T. Yamanura:J. Jpn. lnst. Light Met., 1993, vol. 43, pp. 219–24.

    CAS  Google Scholar 

  13. D. Masutti, J.P. Lentz, and F. Delannay:J. Mater. Sci. Lett., 1990, vol. 9, pp. 340–42.

    Article  CAS  Google Scholar 

  14. ASM Metals Handbook, 9th ed., ASM INTERNATIONAL Metals Park, OH, 1979, vol. 2, pp. 62-122.

  15. A. Kelly and W.R. Tyson:J. Mech. Phys. Sol., 1965, vol. 13, pp. 329–50.

    Article  CAS  Google Scholar 

  16. W. Weibull:J. Appl. Mech., 1951, vol. 18, pp. 293–97.

    Google Scholar 

  17. Y. Matsuo: inEvaluation of Mechanical Property of Ceramics, T. Nishida and E. Yasuda, eds., Nikkan-kogyo, Tokyo, Japan, 1986, pp. 41-61 (in Japanese).

  18. K. Matsunaga, S. Ochiai, K. Osamura, Y. Waku, and T. Yamamura:J. Jpn. lnst. Met., 1993, vol. 57, pp. 1035–40 (in Japanese).

    CAS  Google Scholar 

  19. I.H. Kahn:Metall. Trans. A, 1976, vol. 7A, pp. 1281–89.

    Google Scholar 

  20. A.G. Metcalfe and M.J. Klein:Interface in Metal Matrix Composites, Academic Press, New York, NY, 1974, pp. 125–68.

    Google Scholar 

  21. W.H. Hunt, Jr.:Interfaces in Metal-Matrix Composites, A.K. Dhingra and S.G. Fishman, eds., TMS, Warrendale, PA, 1986, pp. 3–25.

    Google Scholar 

  22. G. Simmons and H. Wang:Single Crystal Elastic Constants and Calculated Aggregate Properties, A Handbook, MIT Press, Cambridge, MA, 1971, p. 156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, S., Matsunaga, K., Waku, Y. et al. Temperature-dependence mechanism of tensile strength of Si-Ti-C-0 Fiber-Aluminum matrix composites. Metall Mater Trans A 26, 647–652 (1995). https://doi.org/10.1007/BF02663914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663914

Keywords

Navigation