Skip to main content
Log in

Growth kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X2 alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The parabolic rate constant for the thickening of grain boundary ferrite allotriomorphs at the faces of austenite grain boundaries was measured as a function of isothermal transformation temperature in three Fe-C-X1-X2 alloys where X1 is Mn and X2 is successively Si, Ni, and Co. The results were compared with the predictions of the local equilibrium model for multi-component systems and with those derived from the theory of growth under paraequilibrium conditions. The distribution of Mn and Si in ferrite and austenite in the Fe-C-Mn-Si alloy was also measured as a function of reaction temperature with transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The observed temperature below which alloying element partition ceased was in good agreement with the local equilibrium model. Whereas the parabolic rate constant for thickening was considerably larger than the amount predicted by this theory in the alloying element diffusion-controlled regime, the opposite was true in the carbon diffusion-controlled regime. Similarly, the calculated paraequilibrium constant was usually considerably larger than that measured experimentally. Synergistic enhancements of the effects of Mn and X2 in diminishing thickening kinetics were observed for each X2. The time-temperature-transformation (TTT) curves for the beginning of transformation were calculated from a modified Cahn analysis for the overall kinetics of grain-boundary-nucleated reactions using values of the nucleation rate and the parabolic growth rate constant computed from various models and compared with experimentally determined TTT curves. Substantial discrepancies between the calculated and measured curves were ascribed to synergistic effects of Mn and X2 upon nucleation and growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.I. Aaronson:Decomposition of Austenite by Diffusional Processes, Interscience, New York, NY, 1962, p. 387.

    Google Scholar 

  2. J.R. Bradley, J.M. Rigsbee, and H.I. Aaronson:Metall. Trans. A, 1977, vol. 8A, pp. 323–33.

    CAS  Google Scholar 

  3. J.R. Bradley and H.I. Aaronson:Metall. Trans. A. 1981, vol. 12A, pp. 1729–41.

    Google Scholar 

  4. K.R. Kinsman and H.I. Aaronson:Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, p. 39.

    Google Scholar 

  5. G.J. Shiflet and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1413–32.

    CAS  Google Scholar 

  6. W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.

    CAS  Google Scholar 

  7. K.R. Kinsman and H.I. Aaronson:Metall. Trans., 1973, vol. 4, pp. 959–67.

    CAS  Google Scholar 

  8. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1987, vol. 18A, pp. 1547–57.

    CAS  Google Scholar 

  9. M. Enomoto and H.I. Aaronson: inPhase Transformations’ 87, Institute of Metals, London, 1988, p. 462.

    Google Scholar 

  10. C.S. Smith:Trans. ASM., 1953, vol. 45, p. 533.

    CAS  Google Scholar 

  11. T. Furuhara and H.I. Aaronson:Acta Metall., 1991, vol. 39, p. 2887.

    Article  CAS  Google Scholar 

  12. M. Enomoto and H.I. Aaronson:Scripta Metall., 1989, vol. 23, p. 1983.

    Article  Google Scholar 

  13. A. Hultgren:Jernkontorets Ann., 1951, vol. 135, p. 403.

    Google Scholar 

  14. M. Hillert:Jernkontrorets Ann., 1952, vol. 136, p. 25.

    Google Scholar 

  15. J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy:Metall. Trans., 1972, vol. 3, pp. 1455–64.

    Article  CAS  Google Scholar 

  16. H.I. Aaronson, H.A. Domian, and G.M. Pound:Trans. TMS-AIME, 1966, vol. 236, p. 768.

    CAS  Google Scholar 

  17. M. Hillert:Internal Report, Swedish Institute for Metals Research, Stockholm, Sweden, 1953.

    Google Scholar 

  18. M. Hillert:The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, p. 231.

    Google Scholar 

  19. J.S. Kirkaldy:Can. J. Phvs., 1958, vol. 36, p. 907.

    CAS  Google Scholar 

  20. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 230, p. 1025.

    CAS  Google Scholar 

  21. D.E. Coates:Metall. Trans., 1972, vol. 3, pp. 1203–12.

    Article  CAS  Google Scholar 

  22. D.E. Coates:Metall. Trans., 1973, vol. 4, pp. 1077–86.

    CAS  Google Scholar 

  23. D.E. Coates:Metall. Trans., 1973, vol. 4, pp. 2313–25.

    CAS  Google Scholar 

  24. T. Tanaka, H.I. Aaronson, and M. Enomoto:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 547–59.

    CAS  Google Scholar 

  25. G.J. Shiflet, H.I. Aaronson, and J.R. Bradley:Metall. Trans. A, 1981, vol. 12A, pp. 1743–50.

    Google Scholar 

  26. J.R. Bradley, G.J. Shiflet, and H.I. Aaronson:Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS-AIME, Warrendale, PA, 1982, p. 819.

    Google Scholar 

  27. P.G. Boswell, K.R. Kinsman, G.J. Shiflet, and H.I. Aaronson:Mechanical Properties and Phase Transformations in Engineering Materials, TMS-AIME, Warrendale, PA, 1986, p. 445.

    Google Scholar 

  28. J.R. Bradley and H.I. Aaronson:Metall. Trans. A, 1977, vol. 8A, pp. 317–22.

    CAS  Google Scholar 

  29. J.R. Bradley, T. Abe, and H.I. Aaronson:Rev. Sci. Instrum., 1982, vol. 53, p. 98.

    Article  CAS  Google Scholar 

  30. J.S. Kirkaldy and D.J. Young:Diffusion in the Condensed State, Institute of Metals, London, 1987, pp. 150and 199.

    Google Scholar 

  31. H. Kim:J. Phvs. Chem., 1966, vol. 70, p. 562.

    Article  CAS  Google Scholar 

  32. L.C. Brown and J.S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 230, p. 223.

    CAS  Google Scholar 

  33. C. Wagner:Thermodynamics of Alloys, Addison-Wesley, Reading, MA, 1952, p. 51.

    Google Scholar 

  34. R. Trivedi and G.M. Pound:J. Appl. Phys., 1967, vol. 38, p. 3569.

    Article  CAS  Google Scholar 

  35. C.H.P. Lupis and J.F. Elliot:Ada Metall., 1967, vol. 15, p. 265.

    Article  CAS  Google Scholar 

  36. C.H.P. Lupis:Chemical Thermodynamics of Materials, North Holland, New York, NY, 1983, p. 452.

    Google Scholar 

  37. J.-C. Mathieu, F. Durand, and E. Bonnier:J. Chim. Phys., 1965, vols. 11-12, p. 1289.

  38. T. Tanaka, H.I. Aaronson, and M. Enomoto:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 535–45.

    CAS  Google Scholar 

  39. M. Enomoto:Trans. IS1J, 1988, vol. 29, p. 826.

    Google Scholar 

  40. J. Fridberg, L-E Torndahl, and M. Hillert:Jernkontorets Ann., 1969, vol. 153, p. 263.

    CAS  Google Scholar 

  41. S.K. Liu, W.T. Reynolds, Jr., H. Hu, G.J. Shiflet, and H.I. Aaronson:Metall. Trans. A, 1985, vol. 16A, pp. 457–68.

    CAS  Google Scholar 

  42. J.S. Kirkaldy, B.A. Thomson, and E. Baganis:Hardenability Concepts with Applications to Steel, TMS-AIME, Warrendale, PA, 1978, p. 82.

    Google Scholar 

  43. W.T. Reynolds, Jr., S.S. Brenner, and H.I. Aaronson:Scripta Metall., 1988, vol. 22, p. 1343.

    Article  CAS  Google Scholar 

  44. I. Stark and G.D.W. Smith: inPhase Transformations ’87, Institute of Metals, London, 1988, p. 476.

    Google Scholar 

  45. G. Chen, S.S. Brenner, S.K. Liu, and H.I. Aaronson: Carnegie- Mellon University, Pittsburgh, PA, unpublished research, 1989.

  46. T. Obara, W.F. Lange 111, H.I. Aaronson, and B.E. Dom:Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS-A1ME, Warrendale, PA, 1982, p. 1105.

    Google Scholar 

  47. W.F. Lange III, M. Enomoto, and H.I. Aaronson:Metall. Trans. A, 1988, vol. 19A, pp. 427–40.

    Google Scholar 

  48. J.W. Cahn:Ada Metall., 1956, vol. 4, p. 449.

    Article  CAS  Google Scholar 

  49. E.E. Underwood:Quantitative Stereology, Addison-Wesley, New York, NY, 1970.

    Google Scholar 

  50. H.I. Aaronson and H.A. Domian:Trans. TMS-AIME, 1966, vol. 236, p. 781.

    CAS  Google Scholar 

  51. M. Enomoto:Acta Metall., 1987, vol. 35, p. 947.

    Article  CAS  Google Scholar 

  52. H.B. Aaron and H.I. Aaronson:Ada Metall., 1986, vol. 16, p. 789.

    Article  Google Scholar 

  53. A.D. Brailsfold and H.B. Aaron:J. Appl. Phys., 1969, vol. 40, p. 1702.

    Article  Google Scholar 

  54. M.A. Grossmann, M. Asimov. and S.F. Urban:Trans. ASM, 1939, vol. 26, p. 124.

    Google Scholar 

  55. M.A. Grossmann:Trans. AIME, 1942, vol. 150, p. 227.

    Google Scholar 

  56. W.W. Cias and D.V. Doane:Metall. Trans.. 1973, vol. 4, pp. 2257–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA

Formerly Mehl Professor Emeritus at Carnegie Mellon University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Aaronson, H.I. & Enomoto, M. Growth kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X2 alloys. Metall Mater Trans A 26, 561–580 (1995). https://doi.org/10.1007/BF02663906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663906

Keywords

Navigation