Skip to main content
Log in

Kinetics of cyclic oxidation and cracking and finite element analysis of MA956 and sapphire/MA956 composite system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sapphire fiber-reinforced MA956 composites hold promise for significant weight savings and increased high-temperature structural capability, as compared to unreinforced MA956. As part of an overall assessment of the high-temperature characteristics of this material system, cyclic oxidation behavior was studied at 1093 °C and 1204 °C. Initially, both sets of coupons exhibited parabolic oxidation kinetics. Later, monolithic MA956 exhibited spallation and a linear weight loss, whereas the composite showed a linear weight gain without spallation. Weight loss of the monolithic MA956 resulted from the linking of a multiplicity of randomly oriented and closely spaced surface cracks that facilitated ready spallation. By contrast, cracking of the composite’s oxide layer was nonintersecting and aligned nominally parallel with the orientation of the subsurface reinforcing fibers. Oxidative lifetime of monolithic MA956 was projected from the observed oxidation kinetics. Linear elastic, finite element continuum, and micromechanics analyses were performed on coupons of the monolithic and composite materials. Results of the analyses qualitatively agreed well with the observed oxide cracking and spallation behavior of both the MA956 and the Sapphire/MA956 composite coupons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Donachie: inSuper Alloy Source Book, M.J. Donachie, ed., ASM, Metals Park, OH, 1984, pp. 102–11.

    Google Scholar 

  2. J.S. Benjamin: inNew Materials by Mechanical Alloying Techniques, E. Arzt and L. Schultz, eds., Verlag DGM, Oberursel, 1989, pp. 3–18.

    Google Scholar 

  3. K. Hilpert and M. Miller:Z. Metallkd., 1992, vol. 83 (10), pp. 739–43.

    CAS  Google Scholar 

  4. D.P. Whittle and J. Stringer:Phil. Trans. R. Soc. London A, 1980, vol. 295, pp. 309–29.

    Article  CAS  Google Scholar 

  5. A.W. Funkenbusch, J.G. Smeggil, and N.S. Bornstein:Metall. Trans. A, 1986, vol. 16A, pp. 923–32.

    Google Scholar 

  6. K.N. Lee and N.S. Jacobson:Am. Ceram. Soc, 1995, vol. 78 (3), pp. 711–15.

    Article  CAS  Google Scholar 

  7. J. Doychak, J.A. Nesbitt, R.D. Noebe, and R.R. Bowman:Oxid. Met, 1992, vol. 38 (1-2), pp. 45–71.

    Article  CAS  Google Scholar 

  8. D.B. Marshall and A.G. Evans:J. Am. Ceram. Soc., 1985, vol. 68, pp. 225–31.

    Article  CAS  Google Scholar 

  9. J.A. Nesbitt, R.R. Bowman, and S.L. Draper:Hitemp Review, NASA-Lewis Research Center, Cleveland, OH, 1994, vol. II, pp. 48:1–48:11.

    Google Scholar 

  10. K.N. Lee and Wayne L. Worrell:Oxid. Met, 1994, vol. 41 (1-2), pp. 37–63.

    Article  CAS  Google Scholar 

  11. W.J. Quadakkers and M.J. Bennett:Mater. Sci. Technol, 1994, vol. 10, pp. 126–31.

    CAS  Google Scholar 

  12. W.J. Quadakkers and K. Bongartz:Werk. Korros., 1994, vol. 45, pp. 232–41.

    Article  CAS  Google Scholar 

  13. J.A. Nesbitt, E.J. Vinarcik, C.A. Barrett, and J. Doychak:Mater. Sci. Eng., 1992, vol. A153, pp. 561–66.

    CAS  Google Scholar 

  14. E. Lowell, C.A. Barrett, R.W. Palmer, J.V. Auping, and H.B. Probst:Oxid Met, 1991, vol. 36 (1-2), pp. 81–112.

    Article  CAS  Google Scholar 

  15. N. Birks and G.H. Meier:Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, 1983, pp. 101–05.

    Google Scholar 

  16. A.J. Misra:Scripta Metall. Mater., 1993, vol. 28, pp. 1189–94.

    Article  CAS  Google Scholar 

  17. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee:Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1977, vol. 13.

    Google Scholar 

  18. Anon.:MARC General Purpose Finite Element Program, MARC Analysis Research Corporation, Palo Alto, CA, 1992, vol. A—D.

  19. H.-J. Lee, P.K. Gotsis, P.L.N. Murthy, and D.A. Hopkins:Metal Matrix Composite Analyzer (METCAN), User’s Manual—Version 4.0, NASA TM-105244, NASA, Washington, DC, 1991.

    Google Scholar 

  20. J.B. Wachtman and L.H. Maxwell:Am. Ceram. Soc, 1954, vol. 37 (7), pp. 291–99.

    Article  CAS  Google Scholar 

  21. Anon.:Engineering Properties of Ceramics, AFML TR-66-52, AFML, Wright Patterson AFB, OH. 1966.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.N., Arya, V.K., Halford, G.R. et al. Kinetics of cyclic oxidation and cracking and finite element analysis of MA956 and sapphire/MA956 composite system. Metall Mater Trans A 27, 3279–3291 (1996). https://doi.org/10.1007/BF02663878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663878

Keywords

Navigation