Skip to main content
Log in

Tension characteristics of notched specimens for Al-Li-Cu-Zr alloy sheets with various cerium contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present article, the high strength Al-Li-Cu-Zr alloy sheets modified by a rare earth element, Ce, are considered for possible application in practical aircraft products containing structural notches or stress concentrations; accordingly, a study has been made on the effects of stress concentration levels and Ce contents on the tension strength of notched specimens for the alloy sheets. Moreover, a discussion has been set off on the theoretical predictability on the basis of a theoretical expression for the notch strength by means of the mechanical properties of the smooth specimens. The test results show that when the stress concentration level increases, the notch strength linearly decreases in the double logarithmic coordinate; by comparison with the Ce-free alloy, the Ce-containing alloy sheets exhibit an insignificantly varying notch strength when the Ce content changes from 0.13 to 0.31 wt pct in the transverse orientation specimens or is 0.21 wt pct in the longitudinal orientation specimens even though their ductility for the smooth specimens can be improved to a certain degree by the Ce modification. The test data of notched specimens under the theoretical stress concentration factor (K t), from 2.0 to 8.0 agree better with the predicted values of notch strength. Therefore, in accordance with some engineering properties such as the ultimate tensile strength (UTS), percentage elongation (EL), and Young’s modulus (E) of the smooth specimens, the notch strength of the alloy sheets under plane strain state can be easily estimated in a certain range of stress concentration levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J.H. Wanhill:Int. J. Fatigue, 1994, vol. 16, pp. 3–20.

    Article  CAS  Google Scholar 

  2. S.P. Lynch:Mater. Sci. Eng., 1991, vol. A136, pp. 25–43.

    CAS  Google Scholar 

  3. K.T. Venkateswara Rao and R.O. Ritchie:Mater. Sci. Technol., 1989, vol. 5, pp. 882–95.

    Google Scholar 

  4. N. Eswara Prasad, S.V. Kamat, K.S. Prasad, G. Malakondaiah, and V.V. Kutumbarao:Eng. Fract. Mech, 1993, vol. 46, pp. 209–23.

    Article  Google Scholar 

  5. A.K. Vasudevan, M.A. Przystupa, and W.G. Fricke:Scripta Metall. Mater., 1990, vol. 24, pp. 1429–34.

    Article  CAS  Google Scholar 

  6. Nack J. Kim and E.W. Lee:Acta Metall. Mater., 1993, vol. 41, pp. 941–48.

    Article  CAS  Google Scholar 

  7. F.W. Gayle, W.T. Tack, G. Swanson, F.H. Heubaum, and J.R. Pickens:Scripta Metall. Mater., 1994, vol. 30, pp. 761–66.

    Article  CAS  Google Scholar 

  8. E. Hornbogen and E.A. Starke, Jr.:Acta Metall. Mater., 1993, vol. 41, pp. 1–16.

    Article  CAS  Google Scholar 

  9. I.N. Fridlyander, N.I. Kolobnev, A.L. Berezina, and K.V. Chuistov: inAluminium-Lithium, M. Peters and P.-J. Winkler, eds., DGM Informationsgesellschaft mbH, Oberursel, Germany, 1992, vol. 1, pp. 107–12.

    Google Scholar 

  10. J.J. Witters, E.W. Lee, W.B. Lisagor, S.B. Herner, R.J. Kilmer, and J.E. Talia: inAluminium-Lithium, M. Peters and P.-J. Winkler, eds., DGM Informationsgesellschaft mbH, Oberursel, Germany, 1992, vol. 1, pp. 351–56.

    Google Scholar 

  11. I.N. Fridlyander, S.F. Danilov, E.N. Malysheva, T.A. Gorokhova, and N.N. Kirkina: inAluminium-Lithium, M. Peters and P.-J. Winkler, eds., DGM Informationsgesellschaft mbH, Oberursel, Germany, 1992, vol. 1, pp. 381–86.

    Google Scholar 

  12. A.L. Berezina, V.A. Volkov, S.V. Ivanov, N.I. Kolobnev, and K.V. Chuistov:Phys. Met. Metallogr., 1991, vol. 71, pp. 167–75.

    Google Scholar 

  13. L. Meng, B.C. Zhang, Y. Liang, and P.K. Tian: inAluminium-Lithium, M.. eters and P.-J. Winkler, eds., DGM Informationsgesellschaft mbH, Oberursel, Germany, 1992, vol. 1, pp. 639–44.

    Google Scholar 

  14. B.C. Zhang, Z.Z. Wang, W.B. Zhu, Y.H. Li, and Y. Liang: inAluminium-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publications, Birmingham, England, 1989, vol. 1, pp. 529–38.

    Google Scholar 

  15. L. Meng, X.L. Zheng, and L. Tian:Mater. Sci. Eng, 1995, A196 (2), pp. 191–96.

    CAS  Google Scholar 

  16. L. Meng and X.L. Zheng:Scripta Metall. Mater., 1995, vol. 33 (1), pp. 27–31.

    Article  CAS  Google Scholar 

  17. L. Meng, W.H. Xu, B.C. Zhang, and L. Tian: inAluminium Alloys — Their Physical and Mechanical Properties, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., The Norwegian Institute of Technology, Trondheim, Norway, 1992, vol. 1, pp. 380–84.

    Google Scholar 

  18. L. Meng, B.C. Zhang, Y. Liang, W.Z. Zhang, and P.K. Tian:Acta Metall. Sinica, 1992, vol. 5A, pp. 336–40.

    Google Scholar 

  19. X.J. Jiang, Q.H. Gui, Y.Y. Li, L.M. Ma, G.J. Liang, and C.X. Shi:Scripta Metall. Mater., 1993, vol. 29, pp. 211–16.

    Article  CAS  Google Scholar 

  20. K.-H. Schwalbe:Eng. Fract. Mech, 1977, vol. 9, pp. 795–832.

    Article  CAS  Google Scholar 

  21. X.L. Zheng: inThe Mechanism of Fracture, V.S. Goel, ed., ASM, Metals Park, OH, 1985, pp. 41–44.

    Google Scholar 

  22. X.L. Zheng:Eng. Fract. Mech, 1989, vol. 33, pp. 685–95.

    Article  Google Scholar 

  23. L. Meng and X.L. Zheng:J. Northwestern Polytech. Univ. (in Chinese), 1996, vol. 14, pp. 165–66.

    Google Scholar 

  24. D.S. McDarmaid and C.J. Peel: inAluminium-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publications, Birmingham, England, 1989, vol. 2, pp. 993–1002.

    Google Scholar 

  25. Y. Barbaux: inAluminium-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publications, Birmingham, England, 1989, vol. 3, pp. 1667–75.

    Google Scholar 

  26. J.M. Newman, M.D. Goodyear, J.J. Witters, J. Veciana, and G.K. Platts: inAluminium-Lithium, M. Peters and P.-J. Winkler, eds., DGM Informationsgesellschaft mbH, Oberursel, Germany, 1992, vol. 2, pp. 1371–76.

    Google Scholar 

  27. R.E. Peterson:Stress Concentration Design Factor, John Wiley and Sons, Inc., New York, NY, 1962, pp. 21–27 and 84.

    Google Scholar 

  28. K.T. Venkateswara Rao and R.O. Ritchie:Scripta Metall, 1989, vol. 23, pp. 1129–34.

    Article  Google Scholar 

  29. K.T. Venkateswara Rao and R.O. Ritchie:Ada Metall. Mater., 1990, vol. 38, pp. 2309–26.

    Article  Google Scholar 

  30. L.F. Coffin: inFatigue and Microstructure, M. Meshill, ed., ASM, Metals Park, OH, 1978, pp. 4–7.

    Google Scholar 

  31. X.L. Zheng:Mechanical Properties of Materials (in Chinese), Publishing House of Northwestern Polytechnical University, Xi’an, People’s Republic of China, 1991, pp. 3–13.

    Google Scholar 

  32. P. Brockett and A. Levine:Statistics and Probability and Their Applications, Saunders College Publishing, Philadelphia, PA, 1984, pp. 303–21 and 534-35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, L., Zheng, X.L. Tension characteristics of notched specimens for Al-Li-Cu-Zr alloy sheets with various cerium contents. Metall Mater Trans A 27, 3089–3094 (1996). https://doi.org/10.1007/BF02663858

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663858

Keywords

Navigation