Skip to main content
Log in

Nonequilibrium grain-boundary segregation and ductile-brittle-ductile transition in Fe-Mn-Ni-Ti age-hardening alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nonequilibrium segregation kinetics of alloying elements and a ductile-brittle-ductile transition behavior have been investigated in an Fe-8.4Mn-7.4Ni-l.7Ti alloy. The alloy experienced a ductilebrittle-ductile (DBD) transition during isothermal aging. In the brittle region, the alloy showed a decrease in intergranular fracture strength and a subsequent increase with aging time. This is due to the segregation of titanium to the grain boundaries and its desegregation into the matrix. The intergranular fracture strength was higher on the zero tensile elongation finish curve than on the start curve. This is because the grain-boundary segregation level of titanium is relatively lower on the finish curve. The lowest intergranular fracture strength increased with increasing aging temperature, which was attributed to a lower grain-boundary segregation level of titanium at higher temperature. Manganese caused an overall reduction in intergranular fracture strength and, as a result, the delayed occurrence of the zero tensile elongation (ZTE) finish curve in a temperature and log-time plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gordon and R.A. Vandermeer:Trans, TMS-AIME, 1962, vol. 224, pp. 917–28.

    CAS  Google Scholar 

  2. E.D. Hondros and L.E.H. Stuart:Phil. Mag., 1968, vol. 17, pp. 711–27.

    Article  CAS  Google Scholar 

  3. J.R. Low:Trans. TMS-AIME, 1969, vol. 245, pp. 2481–94.

    CAS  Google Scholar 

  4. R.A. Mulford, C.J. McMahon, Jr., D.P. Pope, and H.C. Feng:Metall. Trans. A, 1976, vol. 7A, pp. 1183–95.

    CAS  Google Scholar 

  5. C.L. Briant and S.K. Banerji:Int. Metall. Rev., 1978, vol. 23, pp. 164–99.

    CAS  Google Scholar 

  6. J. Yu and C.J. McMahon, Jr.:Metall. Trans. A, 1980, vol. 11A, pp. 291–300.

    CAS  Google Scholar 

  7. Y.Q. Weng and C.J. McMahon, Jr:Mater. Sci. Technol, 1986, vol. 3, pp. 207–16.

    Google Scholar 

  8. E. Voce and A.P.C. Hallowes:J. Inst. Met., 1947, vol. 73, pp. 323–76.

    CAS  Google Scholar 

  9. A. Joshi and D.F. Stein:J. Inst. Met., 1971, vol. 99, pp. 178–81.

    CAS  Google Scholar 

  10. B.D. Powell and H. Mykura:Ada Metall., 1973, vol. 21, pp. 1152–56.

    Article  Google Scholar 

  11. A. Joshi and D.F. Stein:Metall. Trans., 1970, vol. 1, pp. 2543–46.

    CAS  Google Scholar 

  12. D. McLean:Grain Boundaries in Metals, Oxford University Press, London, 1957, pp. 117–49.

    Google Scholar 

  13. M.P. Seah and E.D. Hondros:Proc. R. Soc. London (A), 1973, vol. 335, pp. 191–212.

    Article  CAS  Google Scholar 

  14. M. Guttman:Surf. Sci., 1975, vol. 53, pp. 213–27.

    Article  Google Scholar 

  15. W. Steven and K. Baljava:J. Iron Steel Inst., 1959, vol. 193, pp. 141–47.

    CAS  Google Scholar 

  16. B.J. Schulz and C.J. McMahon, Jr: ASTM-STP 499, ASTM, Philadelphia, PA, 1972, pp. 104–35.

  17. V.M. Kardonsky and M.D. Perkas:Met. Sci. Heat Treat., 1966, No. 4, pp. 254–56.

  18. M. Tanaka, T. Suzuki, and M. Yodogawa:J. Jpn. Inst. Met., 1967, vol. 31, pp. 1075–81.

    CAS  Google Scholar 

  19. D.R. Squire and E.A. Wilson:Metall. Trans. A, 1972, vol. 3A, pp. 575–81.

    Google Scholar 

  20. H.C. Feng, E.A. Wilson, and C.J. McMahon, Jr.:Proc. 3rd Int. Conf. Strength Metals and Alloys, Cambridge, United Kingdom, 1973, pp. 129–33.

  21. N.H. Heo: Ph.D. Thesis, Seoul National University, Seoul, 1993.

  22. N.H. Heo and H.C. Lee:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1015–20.

    CAS  Google Scholar 

  23. N.H. Heo:Scripta Mater., 1996, vol. 34, pp. 1517–22.

    Article  CAS  Google Scholar 

  24. N.H. Heo:Acta Metall., in press.

  25. N.H. Heo and H.C. Lee:Scripta Metall, 1995, vol. 33, pp. 2031–35.

    Article  CAS  Google Scholar 

  26. N.H. Heo:Acta Mater, 1996, vol. 44, pp. 1581–89.

    Article  CAS  Google Scholar 

  27. S. Floreen and G.R. Speich:Trans. ASM, 1964, vol. 57, pp. 714–26.

    CAS  Google Scholar 

  28. L.E. Davis, N.C. MacDonald, P.W. Palmberg, E. Riach, and R.E. Weber:Handbook of Auger Electron Spectroscopy, 2nd ed, Physical Electronics, Edina, MN, 1976.

    Google Scholar 

  29. M.P. Seah and W.A. Dench:Surf. Interface Anal, 1979, vol. 1, pp. 2–11.

    Article  CAS  Google Scholar 

  30. S.J. Kim and CM. Wayman:Mater. Sci. Eng., 1990, vol. 128, pp. 217–30.

    Article  Google Scholar 

  31. A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C. Martens, and A.R. Miedema: CALPHAD, 1983, vol. 7, pp. 51–70.

    Article  CAS  Google Scholar 

  32. M.P. Seah:Acta Metall, 1980, vol. 28, pp. 955–62.

    Article  CAS  Google Scholar 

  33. J. Yu: Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Graduate Student, Department of Metallurgical Engineering, Seoul National University, Seoul, 151-742 Korea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, N.H. Nonequilibrium grain-boundary segregation and ductile-brittle-ductile transition in Fe-Mn-Ni-Ti age-hardening alloy. Metall Mater Trans A 27, 3059–3065 (1996). https://doi.org/10.1007/BF02663854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663854

Keywords

Navigation