Skip to main content
Log in

The influence of stress trlaxiality on the damage mechanisms in an equiaxedα/β Ti-6AI-4V alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of the stress triaxiality on void formation, void growth, and fracture was investigated for an equiaxed Ti-6A1-4V alloy. Void nucleation in theα phase was found to occur for a critical value of macroscopic plastic strain, whereas void nucleation at theα/β interface also depends on triaxiality. Under low triaxiality and important plastic strain, voids appear and grow in the area where the microshear bands develop, with an angle close to 45 deg to the stress axis in theα particles. In contrast, with high triaxiality, voids nucleate preferably at theα/β interfaces and grow perpendicular to the stress axis by a cleavage mechanism. In a middle range of triaxiality and plastic strain, voids nucleate inα because of the sufficient plastic strain and also at theαβ interfaces because of the sufficient triaxiality(X). Void growth occurs with an angle of 60 deg to the stress axis, sinceX is not high enough to create cleavage andε p is high enough to provide a ductile growth. Two types of fracture were identified and reported on a fracture map: under low triaxiality, failure appears by plastic instability, whereas for high triaxiality, the instability is induced by a void-growth process discussed with the help of Rice and Tracey’s approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Greenfield and H. Margolin:Metall. Trans., 1972, vol. 3, pp. 2649–59.

    Article  CAS  Google Scholar 

  2. T.V. Vijayaraghavan and H. Margolin:Metall. Trans. A, 1983, vol. 14A, pp. 2043–53.

    Google Scholar 

  3. H. Margolin and T.V. Vijayaraghavan:Metall. Trans. A, 1988, vol. 19A, pp. 1311–17.

    Google Scholar 

  4. H. Margolin and Y. Mahajan:Metall. Trans. A, 1978, vol. 9A, pp. 781–91.

    CAS  Google Scholar 

  5. H. Margolin and L. Rozenberg:Titanium ’80, Science and Technology, TMS-AIME, Warrendale, PA, 1981, vol. 3, pp. 1637–43.

    Google Scholar 

  6. H. Margolin, J.C. Williams, J.C. Chestnutt, and G. Lüetjering:Titanium ’80, Science and Technology, 1980, vol. 1, pp. 169–216.

    Google Scholar 

  7. F.M. Beremin:Metall. Trans. A, 1981, vol. 12A, pp. 723–31.

    Google Scholar 

  8. A. Brownrigg, W.A. Spitzig, O. Richmond, D. Tierlinck, and J.D. Embury:Acta Metall., 1983, vol. 31 (8), pp. 1141–50.

    Article  CAS  Google Scholar 

  9. J.W. Hancock and D.K. Brown:J. Mech. Phys. Solids, 1983, vol. 31 (1), pp. 1–24.

    Article  Google Scholar 

  10. R.D. Thomson and J.W. Hancock:Int. J. Fract., 1984, vol. 26, pp. 99–112.

    Article  Google Scholar 

  11. J.A. Walsh, K.V. Jata, and E.A. Starke, Jr.:Acta Metall., 1989, vol. 37 (11), pp. 2861–71.

    Article  CAS  Google Scholar 

  12. A.S. Argon:J. Eng. Mater. Technol, Trans ASME, 1976, vol. 98, pp. 60–68.

    Google Scholar 

  13. S.H. Goods and L.M. Brown:Acta Metall, 1978, vol. 27, pp. 1–15.

    Google Scholar 

  14. J. Gurland:Acta Metall, 1972, vol. 20, pp. 735–40.

    Article  CAS  Google Scholar 

  15. D. Teirlinck, F. Zok, J.D. Embury, and M.F. Ashby:Acta Metall, 1988, vol. 36, (5), pp. 1213–28.

    Article  CAS  Google Scholar 

  16. G. Le Roy, J.D. Embury, G. Edwards, and M.F. Ashby:Acta Metall, 1981, vol. 29, pp. 1509–22.

    Article  Google Scholar 

  17. J.W. Hancock and A.C. Mackenzie:J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  18. A.C. Mackenzie, J.W. Hancock, and D.K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  19. S. Ankem and H. Margolin:Metall. Trans. A, 1982, vol. 13A, pp. 595–609.

    Google Scholar 

  20. C.H. Wells and C.P. Sullivan:Trans. ASM, 1969, vol. 62,pp. 263–70.

    CAS  Google Scholar 

  21. Y. Mahajan and H. Margolin:Metall. Trans. A, 1982, vol. 13A, pp. 267–74.

    Google Scholar 

  22. A.S. Béranger, X. Feaugas, and M. Clavel:Mater. Sci. Eng., 1993, vol. 172, (1-2) pp. 31–41.

    Article  Google Scholar 

  23. C. Chen and H.X. Li:Mater. Sci. Technol, 1987, vol. 3, pp. 125–29.

    CAS  Google Scholar 

  24. F. Mudry: Ph. D. Thesis, UTC, Cedex, France, 1982.

  25. ZéBuLoNUser’s Manual, ENSMP, Paris, France, 1994.

    Google Scholar 

  26. P.J. Armstrong and CO. Frederick: Central Electricity Generating Board, Berkeley Nuclear Laboratories, 1966.

  27. J.L. Chaboche:Int. J. Plasticity, 1989, vol. 5, pp. 247–302.

    Article  Google Scholar 

  28. M. Bourgeois, X. Feaugas, and M. Clavel:Scripta Metall, 1996, vol. 34, pp. 1483–1490.

    Article  CAS  Google Scholar 

  29. P. Joly: Ph.D. Thesis, ENSMP, Paris, France, 1992.

    Google Scholar 

  30. X. Feaugas: Ph.D. Thesis, UTC, Cédex, France, 1994.

    Google Scholar 

  31. A.H. Cottrell:Dislocations and Plastic Flow in Crystals, Oxford University Press, London, 1953, pp. 111–16.

    Google Scholar 

  32. G.W. Kulhmann, D. Wilsdorf, and C. Laird:Mater. Sci. Eng., 1979, vol. 37, pp. 111–20.

    Article  Google Scholar 

  33. S.I. Hong and C. Laird:Mater. Sci. Eng., 1990, vol. 128, pp. 15–169.

    Article  Google Scholar 

  34. J. Dickson, L. Handfield, and G. L’Esperance:Mater. Sci. Eng., 1983, vol. 60, pp. L3-L7.

    Article  Google Scholar 

  35. P. Pilvin, X. Feaugas, and M. Clavel:Proc. on the IUTAM Conf, Sèvres, France, Oct. 1994.

  36. X. Feaugas, P. Pilvin, and M. Clavel:Le Zirconium, éditions de physique, 1995, France, pp. 99-110.

  37. M.H. Yoo:Metall. Trans., 1981, vol. 12, pp. 409–18.

    Article  CAS  Google Scholar 

  38. H.M. Kim, H.G. Paris, and J.C. Williams:Proc. 4th Conf. on Titanium, 1980, vol. 3, pp. 1825–34.

    Google Scholar 

  39. J.R. Rice and D.M. Tracey:Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  40. F.A. McClintock:J. Appl. Mech., Trans. ASME, 1968, pp. 363-71.

  41. M.Y. He and J.W. Hutchinson:Trans. ASME, 1981, vol. 48, pp. 830–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbert, A.L., Feaugas, X. & Clavel, M. The influence of stress trlaxiality on the damage mechanisms in an equiaxedα/β Ti-6AI-4V alloy. Metall Mater Trans A 27, 3043–3058 (1996). https://doi.org/10.1007/BF02663853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663853

Keywords

Navigation