Skip to main content
Log in

Cleavage initiation in the intercritically reheated coarse-grained heat affected zone: Part II. Failure criteria and statistical effects

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In part I of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part I of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T p1 :

first thermal cycle peak temperature

T{np2}:

second thermal cycle peak temperature

T p3 :

third thermal cycle peak temperature

Δt8/5 :

time taken to cool from 800 °C to 500 °C during the thermal cycle

Temperature:

test temperature

d measured :

measured distance below the notch to the initiation site

d predicted :

predicted distance below the notch to the maximum principal stress

D init :

predicted size of initiating feature at the point of initiation

σ1max :

maximum principal stress

σ su*inf :

local cleavage stress

σy :

uniaxial yield stress

ε1 :

maximum principal strain at the initiation site

ε1 :

maximum principal strain atd predicted, the point of maximum principal stress

References

  1. T. Haze and S. Aihara:7th Int. Conf. on Offshore Mechanics and Arctic Engineering (OMAE), Houston, TX, Feb. 7-12, 1988, ISOPE, Los Angeles, CA 1988, pp. 515–23.

    Google Scholar 

  2. O.M. Akselsen, Ø. Grong, and J.K. Solberg:Mater. Sci. Technol., 1987, vol. 3, pp. 649–55.

    CAS  Google Scholar 

  3. J.Y. Koo and A. Ozekcin:Proc. Conf. on Welding Metallurgy of Structural Steels, J.Y. Koo, ed., TMS-AIME, Warrendale, PA, 1987, pp. 119–35.

    Google Scholar 

  4. K. Amano, J. Kudo, N. Itakura, and Y. Nakano:8th Int. Conf. on OMAE, The Hague, Mar. 19–23, 1989, ISOPE, Los Angeles, CA, 1989, pp. 683–90.

    Google Scholar 

  5. S. Aihara and K. Okamoto:Proc. Int. Conf on the Metallurgy, Welding and Qualification of Microalloyed (HSLA) Steel Weldments, Houston, TX, Nov. 6–8, 1990, ASM, Materials Park, OH, 1990, pp. 402–25.

    Google Scholar 

  6. T.M. Scoonover:Proc. Int. Conf on the Metallurgy, Welding and Qualification of Microalloyed (HSLA) Steel Weldments, Houston, TX, Nov. 6–8, 1990, ASM, Materials Park, OH, 1990, pp. 276–305.

    Google Scholar 

  7. CD. Lundin, R. Menon, and J.M. Lawson:Weld. J., 1989, vol. 68 (12), pp. 467s-472s.

    Google Scholar 

  8. C.L. Davis and J.E. King:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 563–75.

    Article  CAS  Google Scholar 

  9. J.T. Bowker, J.T. McGrath, J.A. Gianetto, and M.W. Letts:Welding Technology Conf., The Welding Institute, Cambridge, United Kingdom, 1988, paper no. 10.

    Google Scholar 

  10. R.M. Denys:Welding Technology Conf., The Welding Institute, Cambridge, United Kingdom, 1988, paper no. 44.

    Google Scholar 

  11. T.W. Lau, J.T. Bowker, and R.B. Lazor:Proc. Int. Conf. on Welding for Challenging Environments, Welding Institute of Canada, Toronto, 1985.

    Google Scholar 

  12. R.E. Dolby:Met. Constr., 1972, vol. 4, pp. 59–63.

    CAS  Google Scholar 

  13. C. Thaulow and A.J. Paauw:Welding Technology Conf., The Welding Institute, Cambridge, United Kingdom, 1988, paper no. 24.

    Google Scholar 

  14. C. Thaulow, A.J. Paauw, and K. Guttormsen:Weld. J., 1987, vol. 66 (9), pp. 266s-279s.

    Google Scholar 

  15. J.T. McGrath, J.A. Gianetto, R.F. Orr, and M.W. Letts:Can. Metall. Q., 1986, vol. 25 (4), pp. 349–56.

    CAS  Google Scholar 

  16. J.R. Griffith and D.R.J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  17. F.S. Le Pera:Metallography, 1979, vol. 12, pp. 263–68.

    Article  Google Scholar 

  18. D.E. McRobie:Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1985.

    Google Scholar 

  19. P.A.S. Reed:Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1990.

    Google Scholar 

  20. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda:Acta Metall, 1984, vol. 32 (10), pp. 1779–88.

    Article  CAS  Google Scholar 

  21. M. Nakanishi, Y. Komizo, and Y. Fukuda:The Sumitomo Search, 1986, Nov., No. 33, pp. 22-34.

  22. Y. Komizo and Y. Fukuda:Suiyokwai-Shi (Trans. Min. Metall. Assoc. Kyoto), 1987, vol. 20 (9), pp. 621–29.

    CAS  Google Scholar 

  23. S. Lee, B.C. Kim, and D.Y. Lee:Scripta Metall., 1989, vol. 23, pp. 995–1000.

    Article  CAS  Google Scholar 

  24. J.T. Bowker, A.G. Glover, and R.B. Lazor:Conf. Proc. HSLA Steels; Technology and Applications, Philadelphia, PA, Oct. 3–6, 1983, ASM, Metals Park, OH, 1983, pp. 679–86.

    Google Scholar 

  25. J.F. Knott:Fundamentals of Fracture Mechanics, Butterworth and Co., London, 1973.

    Google Scholar 

  26. J.R. Rice and M.A. Johnson:Inelastic Behaviour of Solids, Kanninen, ed., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  27. P. Bowen:Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1984.

    Google Scholar 

  28. P. Bowen and J.F. Knott:Metall. Trans. A, 1986, vol. 17A, pp. 231–41.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Graduate student with the Department of Materials Science and Metallurgy, University of Cambridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, C.L., King, J.E. Cleavage initiation in the intercritically reheated coarse-grained heat affected zone: Part II. Failure criteria and statistical effects. Metall Mater Trans A 27, 3019–3029 (1996). https://doi.org/10.1007/BF02663851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663851

Keywords

Navigation