Skip to main content
Log in

Effect of thermomechanical treatments on the room-temperature mechanical behavior of iron aluminide Fe3AI

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The room-temperature hydrogen embrittlement (HE) problem in iron aluminides has restricted their use as high-temperature structural materials. The role of thermomechanical treatments (TMT),i.e., rolling at 500 °C, 800 °C, and 1000 °C, and post-TMT heat treatments,i.e., recrystallization at 750 °C and ordering at 500 °C, in affecting the room-temperature mechanical properties of Fe-25A1 intermetallic alloy has been studied from a processing-structure-properties correlation viewpoint. It was found that when this alloy is rolled at higher temperature, it exhibits a higher fracture strength. This has been attributed to fine subgrain size (28/μ) due to dynamic recrystallization occurring at the higher rolling temperature of 1000 °C. However, when this alloy is rolled at 1000 °C and then recrystallized, it shows the highest ductility but poor fracture strength. This behavior has been ascribed to the partially recrystallized microstructure, which prevents hydrogen ingress through grain boundaries and minimizes hydrogen embrittlement. When the alloy is rolled at 1000 °C and then ordered at 500 °C for 100 hours, it shows the highest fracture strength, due to its finer grain size. The alloy rolled at 500 °C and then ordered undergoes grain growth. Hence, it exhibits a lower fracture strength of 360 MPa. Fracture morphologies of the alloy were found to be typical of brittle fracture,i.e., cleavage-type fracture in all the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Stoloff:Int. Met. Rev., 1984, vol. 29, pp. 123–35.

    CAS  Google Scholar 

  2. C.T. Liu, J.O. Stiegler, and F.H. Froes:Metals Handbook, 10th ed., vol. 2,Ordered Intermetallics, ASM, Materials Park, OH, 1990, pp. 913–42.

    Google Scholar 

  3. C.T. Liu and K.S. Kumar:J. Met., 1993, vol. 45, pp. 38–44.

    CAS  Google Scholar 

  4. C.T. Liu, E.H. Lee, and CG. McKamey:Scripta Metall, 1989, vol. 23, pp. 875–80.

    Article  CAS  Google Scholar 

  5. A. Shan and D. Lin:Scripta Metall. Mater., 1992, vol. 27, pp. 95–100.

    Article  CAS  Google Scholar 

  6. D.B. Kasul and L.A. Heldt:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1285–90.

    Article  CAS  Google Scholar 

  7. C.T. Liu, C.G. McKamey, and E.H. Lee:Scripta Metall. Mater., 1990, vol. 24, pp. 385–90.

    Article  CAS  Google Scholar 

  8. C.G. McKamey, J.A. Horton, and C.T. Liu:Scripta Metall, 1988, vol. 22, pp. 1679–81.

    Article  CAS  Google Scholar 

  9. CG. McKamey and C.T. Liu:Scripta Metall. Mater., 1990, vol. 24, pp. 2119–22.

    Article  CAS  Google Scholar 

  10. R. Balasubramaniam:Scripta Mater., 1996, vol. 34, pp. 127–33.

    Article  CAS  Google Scholar 

  11. S. Suwas:Master’s Thesis, IIT, Kanpur, 1993.

    Google Scholar 

  12. D. Lin, A. Shan, and D. Li:Scripta Metall. Mater., 1994, vol. 31, pp. 1455–60.

    Article  CAS  Google Scholar 

  13. K. Oki, M. Hasaka, and T. Eguchi:Jpn. J. Appl. Phys., 1973, vol. 12, pp. 1522–30.

    Article  CAS  Google Scholar 

  14. K. Oki, M. Hasaka, and T. Eguchi:Trans. Jpn. lnst. Met., 1973, vol. 14, pp. 8–13.

    Google Scholar 

  15. H.J. McQueen and G.C. Kuczynski:Trans. TMS-AIME, 1959, vol. 215, pp. 619–22.

    CAS  Google Scholar 

  16. R.G. Davies:J. Phys. Chem. Solids, 1963, vol. 24, pp. 985–92.

    Article  CAS  Google Scholar 

  17. Ya.P. Sallisskiy:Phys. Met. Metallgr., 1961, vol. 11, pp. 124–27.

    Google Scholar 

  18. I. Baker and Y. Nagpal: inStructural Intermetallics, R. Darolia, J.J. Kewandoski, C.T. Liu, P.L. Martin, and M.B. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 463–73.

    Google Scholar 

  19. C.G. McKamey, J.H. Devan, P.F. Tortorelli, and V.K. Sikka:J. Mater. Res., 1991, vol. 6, pp. 1779–86.

    CAS  Google Scholar 

  20. C.G. McKamey and D.H. Pierce:Scripta Metall Mater., 1993, vol. 28, pp. 1173–76.

    Article  CAS  Google Scholar 

  21. V.K. Sikka, S. Vishwanathan, and C.G. McKamey: inStructural Intermetallics, R. Darolia, J.J. Kewandoski, C.T. Liu, P.L. Martin, and M.B. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 483–91.

    Google Scholar 

  22. J. Friedel:Dislocations, Pergamon Press, New York, NY, 1964, pp. 320–47.

    Google Scholar 

  23. D.G. Morris and M. Leboeuf:Acta. Metall. Mater., 1994, vol. 42, pp. 1817–23.

    Article  CAS  Google Scholar 

  24. J. Friedel:Dislocations, Pergamon Press, New York, NY, 1964, pp. 12–21.

    Google Scholar 

  25. J. Friedel:Dislocations, Pergamon Press, New York, NY, 1964, pp. 158–65.

    Google Scholar 

  26. J.C.M. Li and C.T. Liu:Scripta Metall. Mater., 1992, vol. 27, pp. 1701–06.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, A., Balasubramaniam, R. & Bhargava, S. Effect of thermomechanical treatments on the room-temperature mechanical behavior of iron aluminide Fe3AI. Metall Mater Trans A 27, 2985–2993 (1996). https://doi.org/10.1007/BF02663848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663848

Keywords

Navigation