Metallurgical and Materials Transactions A

, Volume 27, Issue 10, pp 2966–2977 | Cite as

A high-resolution transmission electron microscopy study of the precipitation process in a dilute Ti-N alloy

  • D. Sundararaman
  • S. Ranganathan
  • V. S. Raghunathan


The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperatureβ phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (α″-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and theα′ (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.



δ nitride phase with NaCl structure


equilibrium ε nitride phase with tetragonal (antirutile) structure


one of the superstructures of hexagonal α-Ti-N alloy that presumably undergoes structural change to a tetragonal one during a precipitation reaction


low-temperature phase of titanium (hcp)


intermediate off-stoichiometric nitride phase in any composition between 16 and 33 at. pct with antirutile structure


nitrogen supersaturated α-Ti (hcp)


high-temperature allotropie phase of nitrogen-alloyed titanium (bcc)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.B. Massalski:Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1990, vol. 3, pp. 2705–8.Google Scholar
  2. 2.
    D. Sundararaman, A.L.E. Terrance, V. Seetharaman, and V.S. Raghunathan:Trans. Jpn. Inst. Met, 1983, vol. 24, pp. 510–13.Google Scholar
  3. 3.
    H.A. Wriedt and J.L. Murray:Bull. Alloy Phase Diagrams, 1987, vol. 8, pp. 378–87.Google Scholar
  4. 4.
    D. Sundararaman, V.S. Raghunathan, and S. Ranganathan:Mater. Sci. Technol, 1995, vol. 11, pp. 729–33.Google Scholar
  5. 5.
    M.J. Blackburn and J.C. Williams:Trans. AIME, 1967, vol. 239, pp. 287–8.Google Scholar
  6. 6.
    D. Sundararaman, V. Seetharaman, and V.S. Raghunathan:Titanium 80, Science and Technology, H. Kimura, ed., TMS-AIME, New York, NY, 1980, pp. 1521–32.Google Scholar
  7. 7.
    L.E. Tanner and H.J. Leamy: inOrder-Disorder Transformations in Alloys, H. Warlimont, ed., Springer-Verlag, Berlin, 1974, pp. 180–239.Google Scholar
  8. 8.
    D. Sundararaman, S. Raju, and V.S. Raghunathan:J. Phys. Chem. Solids, 1989, vol. 50, pp. 1101–12.CrossRefGoogle Scholar
  9. 9.
    V.A. Phillips:Ada Metall, 1973, vol. 21, pp. 219–28.CrossRefGoogle Scholar
  10. 10.
    P.G. Self, R.W. Glaisher, and A.E.C. Spargo:Ultramicroscopy, 1985, vol. 18, pp. 49–62.CrossRefGoogle Scholar
  11. 11.
    J.M. Cowley:Diffraction Physics, North-Holland, Amsterdam, 1975, pp. 275–98.Google Scholar
  12. 12.
    J.M. Howe:J. Met., 1987, vol. 39, pp. 13–16.Google Scholar
  13. 13.
    T. Epicier:Mater. Res. Soc. Symp. Proc, 1990, vol. 183, pp. 255–66.Google Scholar
  14. 14.
    T. Epicier:J. Am. Ceramic Soc, 1991, vol. 74, pp. 2359–66.CrossRefGoogle Scholar
  15. 15.
    T.S. Radhakrishnan, Y. Hariharan, M.C. Valsakumar, D. Sundararaman, and V.S. Raghunathan:Physica, 1981, vol. 107B, pp. 649–50.Google Scholar
  16. 16.
    D. Sundararaman and V.S. Raghunathan:Indo-German Seminar on Trends and Techniques in Modern Materials Research Proc, P. Rodriguez, K. Kishan, and B. Purniah, eds., Indira Gandhi Centre for Atomic Research, Kalpakkam, India, 1988, pp. 119–27.Google Scholar
  17. 17.
    D. Sundararaman: Ph.D. Thesis, Indian Institute of Science, Bangalore, India, 1989.Google Scholar
  18. 18.
    A. Kelly and G.W. Groves: inCrystallography and Crystal Defects, Addison-Wesley, Reading, MA, 1970, pp. 313–36.Google Scholar
  19. 19.
    Minfa Lin, G.B. Olson, and Morris Cohen:Acta Metall. Mater., 1993, vol. 41, pp. 253–63.CrossRefGoogle Scholar
  20. 20.
    E. Hornbogen and R.C. Glenn:Trans. TMS-AIME, 1960, vol. 218, pp. 1064–70.Google Scholar
  21. 21.
    S.R. Goodman, S.S. Brenner, and J.R. Low:Metall. Trans., 1973, vol. 4, pp. 2363–69.Google Scholar
  22. 22.
    C.H. Li, D.A. Porter, and K.E. Easterling:Acta Metall. Mater., 1985, vol. 33, pp. 317–28.CrossRefGoogle Scholar
  23. 23.
    M.M. Tsai and J.M. Howe:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2219–26.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1996

Authors and Affiliations

  • D. Sundararaman
    • 1
  • S. Ranganathan
    • 2
  • V. S. Raghunathan
    • 1
  1. 1.Metallurgy DivisionIndira Gandhi Centre for Atomic Research, KalpakkamTamilnaduIndia
  2. 2.Centre for Advanced Study, Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations