Skip to main content
Log in

Numerical modeling of electric arcs

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Thermal plasmas generated by electric arc discharges between various types of electrodes or by plasmatrons have many well-established-and numerous potential-applications in extractive metallurgy, materials processing and high temperature chemistry. The current is from below 100 A in welding arcs to above 100 kA in electric arc furnaces (EAF) for steel-making and submerged arc furnaces (SAF) for production of silicon alloys. AC as well as DC is used. To improve process understanding and equipment design a number of simulation models have been developed, reaching higher levels of sophistication as more computer capacity has become available. This report reviews the state-of-the-art of arc simulation and discusses some important problems and challenges for future modelling work-in particular on high currents and AC operation. The perspective is the metallurgical and chemical engineers' demand for practical simulation models-not the physicist's very stringent approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sakulin, Fachberichte Hüttenpraxis Met.verarbeittung, 20, No. 3 (1982).

  2. H. Pfeifer, F. H. Fett, and H. J. Bebber, ElektrowÄrme int., 3, B124-B130 (1989).

    Google Scholar 

  3. H. L. Larsen, Channel model for AC electric arc, SINTEF, Trondheim, Norway, Report STF34 A931113 (1993).

    Google Scholar 

  4. S. Ramakrishnan, A. D. Stokes, and J. J. Lowke, J. Phys. D: Appl. Phys., 11, 2267–2280 (1978).

    Article  Google Scholar 

  5. N. J. Holt, J. A. Bakken, and R. Jensen, ISPC-10, Bochum, Germany (1991).

  6. L. Gu, Transport phenomena in silicon vapour infiltrated argon arcs and anodic metal pools, Ph. D., Thesis, Dept. of Metallurgy, The Norwegian Institute of Technology, Trondheim, Norway (1993).

    Google Scholar 

  7. L. Gu and J. A. Bakken, Mass, Heat and Momentum Transfer at the Plasma-Metal Pool Interface in a Plasma Arc Reactor, Int. Sem. Heat and Mass Transfer under Plasma Conditions, Cesme, Turkey (1994).

  8. L. Gu, Thermodynamic and Transport Properties of and Diffusion in (Ar-)Si-O-C Plasmas, SINTEF, Trondheim, Norway, Report STF34 A94546 (1994).

    Google Scholar 

  9. H. J. Larsen, L. Gu, and J. A. Bakken, A Numerical Model for the Arc in the Silicon Metal Furnace, INFACON 7, Trondheim, Norway (1995).

  10. H. L. Larsen, A. Hildal, V. G. Sevastyanenko, and J. A. Bakken, Numerical Modelling of AC Electric Arcs, ISPC-12, Minneapolis, USA (1995).

  11. S. T. Johansen and L. Gu, A Reynolds stress turbulence model for fluid flow and enthalpy dispersion in strong external magnetic fields. Int. Symp. El.magn. proc. Mat. ISU, Nagoya (1994).

    Google Scholar 

  12. V. G. Sevastyanenko and R. I. Soloukhin (ed.), Handbook of Radiative Heat Transfer in High-Temperature Cases, R. Goulard (Eng. ed.), Hemisphere Publ. Corp./Springer-Verlag (1987).

  13. A. E. Arntsberg, L. Gu, and J. A. Bakken, J. High Temp. Chem. Processes, 1, 45–55 (1992).

    Google Scholar 

  14. V. G. Sevastyanenko, L. Gu, and J. A. Bakken, Radiative Gas-Dynamics in Multicomponent Plasma, Int. Sem. Heat Mass Transfer under Plasma Cond., Cesme, Turkey (1994).

  15. V. G. Sevastyanenko, L. Gu, and J. A. Bekken, Calculation of Radiative Heat-Transfer in Low-Temperature Plasmas, ISPC-12, Minneapolis, USA (1995).

  16. B. Bowman, Properties of arcs in DC furnaces, 52nd Electric Furnace Conf., Nashville, USA (1994).

  17. K. Ragaller, U. Kogelschatz, and W. R. Schneider, Z. Naturforscnung, 28a, 1321–1328 (1973).

    Google Scholar 

  18. K. C. Hsu and E. Pfender, J. Appl. Phys., 54, 3818–3823 (1983).

    Article  Google Scholar 

  19. C. Delalondre and O. Simonin, Modelling of high intensity arcs including a non-equilibrium description of the cathode sheath, Colloque de Physique, C5-1990, Supplement au J. de Physique, FASC. 18, 199–206 (1990).

    Google Scholar 

  20. P. Zhu, J. J. Lowke, and R. Morrow, J. Phys. D: Appl. Phys., 25, 1221–1230 (1992).

    Article  Google Scholar 

  21. J. J. Lowke, P. Kovitya, and H. P. Schmidt, J. Phys. D: Appl. Phys., 25, 1600–1606 (1992).

    Article  Google Scholar 

  22. A. Kaddani, C. Delalondre, O. Simonin, and H. Minoo, Thermal and Electrical Coupling of Arc Electrodes, TPP-3, Aschen, Germany (1994).

  23. A. Kaddani, O. Simonin, and C. Delalondre, Numerical Investigations of the Cathode Region of Electric Arcs, ISPC-12, Minneapolis, USA (1995).

  24. J. J. Lowke, R. Morrow, and J. A. Haidar, A Simplified Unified Theory of Arcs and Their Electrodes, ISPC-12, Minneapolis, USA (1995).

  25. M. S. Benilov and A. Marotta, Theory of thermal arc spots on electrodes, TPP-3, Aachen, Germany (1994).

  26. M. S. Benilov and A. Marotta, Theory of Cathodic Part of High-Pressure Arc Discharges, ISPC-12, Minneapolis, USA (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakken, J.A., Gu, L., Larsen, H.L. et al. Numerical modeling of electric arcs. J Eng Phys Thermophys 70, 530–543 (1997). https://doi.org/10.1007/BF02663569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663569

Keywords

Navigation