Skip to main content

Advertisement

Log in

Individualisierte regionale und systemische 5-FU-Chemotherapie durch PET und MRS-Monitoring

Individualization of regional and systemic 5-FU chemotherapy by means of PET and MRS monitoring

  • Published:
Acta Chirurgica Austriaca Aims and scope Submit manuscript

Zusammenfassung

Die Positronen-Emissions-Tomographie (PET) und Magnetische Resonanzspektroskopie (MRS) eröffnen Einblicke in den Tumorstoffwechsel. Die PET erlaubt die quantitative Bestimmung der Perfusion von Gewebearealen und ist in der Lage, Aussagen über die Akkumulation von Zytostatika in Tumoren zu machen. Demgegenüber kann die MRS Stoffwechselprodukte in Tumoren nachweisen und erlaubt Aussagen über den zugrundeliegenden Metabolismus. Dies kann bei Verwendung von 5-Fluorouracil (5-FU) sowohl in vivo am Patienten unter Chemotherapie geschehen, als auch an Metastasenexzidaten. In letztem Fall können auch einzelne Intermediärprodukte des Stoffwechsels quantifiziert werden, was die Bestimmung des Anteils zytotoxischer Anabolite im Tumorgewebe erlaubt. Die31Phosphor-Spektroskopie kann zusätzlich zur Beurteilung des durch Chemotherapie induzierten Zellschadens beitragen, indem die intratumoralen Anteile energiereicher Phosphate sowie der intratumorale pH-Wert bestimmt werden.

Alle Verfahren bieten Ansätze, die Patienten herauszufinden, bei denen günstige Voraussetzung für eine effektive 5-FU-Chemotherapie bestehen, und andererseits die Patienten zu ermitteln, bei denen mit einem Ansprechen auf die Behandlung nicht gerechnet werden kann.

Summary

Recently established methods as Positron-Emission-Tomography (PET) and Magnetic Resonance Spectroscopy (MRS) enable new approaches to investigate tumor metabolism. PET allows to determine vascular perfusion of tumorous areas and an assessment on a quantitative basis. Furthermore, the accumulation of cytostatic drugs within areas of tumor may be measured in comparison to surrounding tissue using18Fluorouracil. MRS with19F provides information on the concentration of intermediate products of tumor metabolism. Assessing 5-FU metabolism, this may be used duringthe application of chemotherapy or, in an exvivo situation to examine tumor tissue samples. In this case the concentration of single metabolites of 5-FU metabolism, f.e. anabolites might be measured if their concentration exceeds 5 nmol/g tissue. With the measurement of energy-rich phosphates and the pH-value within tumors31P-MRS additionally might allow to estimate the extent of cytotoxic damage induced by chemotherapy.

PET and MRS offer new approaches to select those patients with a good chance to benefit from 5-FU chemotherapy and to rule out those in whom response to treatment might not really be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abe Y, Fukuda H, Ishiwata K, Yoshioka S, Yamada K, Endo S, Kubota K, Sato T, Matsuzawa, Takahashi T, Ido T: Studies on 18F-labeled pyrimidines. Tumor uptake of 18F-5-fluorouracil, 18F-5-fluorouridine and 18F-5-fluorodeoxy-uridine in animals. Eur J Nucl Med 1983;8:258–261.

    Article  PubMed  CAS  Google Scholar 

  2. Bading JR, Daly JM, Gelbard AS, Benua RS: A kinetic imaging study of human metastases by hepatic artery injection of N-13 glutamate. J Nucl Med 1985;26:109–116.

    Google Scholar 

  3. Daly JM, Butler J, Kemeny N, Yeh SD, Ridge JA, Botet J, Bading JR, DeCosse JJ, Benua RS: Predicting Tumor Response in Patients with Colorectal Hepatic Metastases. Ann Surg 1985; 202:384–393.

    Article  PubMed  CAS  Google Scholar 

  4. Evelhoch JL: In vivo 19-F nuclear magnetic resonance spectroscopy: a potential monitor of 5-fluorouracil pharmacokinetics and metabolism. Invest N Drugs 1989;7:5–12.

    CAS  Google Scholar 

  5. Gückel F, Bachert-Baumann P, Semmler W, Lorenz W, van Kaick G: Grundlagen der MR-Spektroskopie. Z. Gastroenterol Verhbd 1988;24:155–157.

    Google Scholar 

  6. Hawkins RA, Phelps ME: PET in clinical oncology. Cancer Metast Rev 1988;7:119–142.

    Article  CAS  Google Scholar 

  7. Hohenberger P, Semmler W, Bachert-Baumann P, Manner M, Schlag P: Sofortbeurteilung cytotoxischer Effekte bei der Extremitätenperfusion durch MR-Spektroskopie. Langenbecks Arch Suppl Chir Forum 1989;491~496.

  8. Hohenberger P. Frohmüller S. Dimitrakopoulou A, Dueck M, Strauß LG, Schlag P: Verbesserte Bestimmung der Perfusion von Leber- und Metastasengewebe durch H2 15O. Langenbecks Arch Chir Suppl Chir Forum 1991:147~152.

  9. Hohenberger P, Frohmüller S, Dimitrakopoulou A, Lehner B, Strauß LG, Schlag P: The use of18Fluorouracil Positron Emission Tomography (PET) for pretherapeutic classification of response in regional chemotherapy of colorectal liver metastases (Cancer, submitted, 1929).

  10. Hull WE, Port R, Kunz W, Schlag P:19F-NMR for monitoring 5-fluorouracil chemotherapy. Soc Magnet Res. Med 1988;6:107.

    Article  Google Scholar 

  11. Hull WE, Port RE, Herrmann R, Britsch B, Kunz W: Metabolites of 5-fluorouracil in plasma and urine, as monitored by 19-F nuclear magnetic resonance spectroscopy, for patients receiving chemotherapy with and without methotrexate pretreatment. Cancer Res 1988;48:1680–1688.

    PubMed  CAS  Google Scholar 

  12. McSheehy PMJ, Prior MJW, Griffiths JR: Peak integrals of fluoronucleotides measured by MRS in vivo predict 5-fluorouracil cytotoxicity towards the Walker carcinosarcoma. Br J Cancer 1989;60:303–309.

    PubMed  CAS  Google Scholar 

  13. Naser-Hijazi B, Berger MR, Schmähl D, Schlag P, Hull WE: Locoregional administration of 5-fluoro-2′-deoxyuridine (FUDR) in Novikoff hepatoma in the rat: effects of dose and infusion time on tumor growth and on FUDR metabolite levels in tumor tissue as determined by 19-F NMR spectroscopy. J Cancer Res Clin Oncol 1991; 117:295–304.

    Article  PubMed  CAS  Google Scholar 

  14. Pinedo HM, Peters GF: Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988;6:1653–1664.

    PubMed  CAS  Google Scholar 

  15. Ott RJ: The applications of positron emission tomography to oncology. Br J Cancer 1991;63:343–345.

    PubMed  CAS  Google Scholar 

  16. Presant CA, Wolf W, Albright MJ, Servis L, King R, Atkinson D, Ong RL, Wiseman C, King M, Blayney D, Kennedy P, El Tahtawy A, Singh M, Shani J: Homan Tumor Fluorouracil trapping: Clinical Correlation of in vivo 19-F Nuclear Magnetic Resonance Spectroscopy Pharmacokinetics. J Clin Oncol 1990;8:1868–1873.

    PubMed  CAS  Google Scholar 

  17. Prior MJ, Maxwell RJ, Griffiths JF: In vivo 19F NMR spectroscopy of the antimetabolite 5-fluorouracil and its analogues. Biochem Pharmacol 1990;39:857–863.

    Article  PubMed  CAS  Google Scholar 

  18. Reivich M, Alavi A (eds): PET of the brain. Heidelberg, Springer, 1983.

    Google Scholar 

  19. Ridge JA, Bading JR, Gelbard AS, Benua RS, Daly JM: Perfusion of colorectal hepatic metastases. Cancer 1987;59:1547–1553.

    Article  PubMed  CAS  Google Scholar 

  20. Ridge JA, Sigurdson ER, Daly JM: Distribution of fluorodeoxyuridine (FUDR) uptake in human liver and colorectal hepatic metastases after arterial infusion. Surg Gynecol Obstet 1987;164:319–323.

    PubMed  CAS  Google Scholar 

  21. Schmidlin P, Kübler WK, Doll J, Strauss LG, Ostertag H: Image processing in whole body positron emission, in Schmidt HA, Csermay L (eds): Nuklearmedizin. Stuttgart, Schattauer, 1987, pp 84–87.

    Google Scholar 

  22. Thom AK, Sigurdson E, Bitar M, Daly JM: Regional hepatic arterial infusion of degradable starch microspheres increases fluorodeoxyuridine (FUdR) tumor uptake. Surgery 1989;105:383–392.

    PubMed  CAS  Google Scholar 

  23. Rew DA, Wilson GD, Taylor I, Weaver PC: Proliferation characteristics of human colorectal carcinomas measured in vivo. Br J Surg 1991;78:60–66.

    Article  PubMed  CAS  Google Scholar 

  24. Schober O, Meyer GJ: Klinische Anwendung der Positronen Emissionstomographie bei Tumorpatienten. Z Gastroenterol Verhbd 1989;24:152–154.

    CAS  Google Scholar 

  25. Semmler W, Gademann G, Bachert-Baumann P: In vivo 31-Phosphor Spektroskopie von Tumoren: Prä-, intra-und posttherapeutisch. Fortschr Röntgenstr 1988;149:335–340.

    Article  Google Scholar 

  26. Semmler W, Bachert-Baumann P, Gückel F, Ermark F, Schlag P, Lorenz J, van Kaick G: Real time follow-up of 5-fluorouracil metabolism in the liver of tumor patients by means of 19-F-MR spectroscopy. Radiology 1990;174:141–145.

    PubMed  CAS  Google Scholar 

  27. Shani J, Wolf W: A model for prediction of chemotherapy response to 5-fluorouracil based on the differential distribution of 5-(F18)-fluorouracil in sensitive versus resistant lymphocytic leukemia in mice. Cancer Res 1977;37:2306–2308.

    PubMed  CAS  Google Scholar 

  28. Strauss LG: Positronenstrahler in der Erforschung des Tumorstoffwechsels. Radiologe 1988;29:318–321.

    Google Scholar 

  29. Wolf W, Albright MJ, Silver MS, Weber H, Reichardt U, Sauer R: Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy. Magn Res Imag 1987;166:165–169.

    Article  Google Scholar 

  30. Wolf W, Presant CA, Servis KL, El-Tahtawy A, Albright MJ, Barker PB, Ring R, Atkinson D, Ong R, King M, Singh M, Ray M, Ray M, Wiseman M, Blayney D, Shani J: Tumor trapping of 5-fluorouracil: in vivo 19F NMR spectroscopic pharmacokinetics in tumor-bearing humans and rabbits. Proc Natl Acad Sci USA 1990;98:492–496.

    Article  Google Scholar 

  31. Woodard HQ, Gigler RE, Freed B, Russ G: Expression of tissue isotope distribution. J Nucl Med 1975;16:958–959.

    PubMed  CAS  Google Scholar 

  32. Jochheim C, Linscheid M, Löffler TM: Bestimmung der Gewebekonzentration von 5-Fluorouracil nach intraarterieller Injektion in normalem Lebergewebe und Lebermetastasen. Tumordiagn u Ther 1991;12:55–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohenberger, P., Schlag, P., Semmler, W. et al. Individualisierte regionale und systemische 5-FU-Chemotherapie durch PET und MRS-Monitoring. Acta Chir Austriaca 23, 196–209 (1991). https://doi.org/10.1007/BF02663225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663225

Schlüsselwörter

Key-words

Navigation