Skip to main content
Log in

Grain egression: A new mechanism of fatigue-crack initiation in Ti-6Al-4V

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A new mechanism of fatigue-crack initiation (FCI), grain egression, was observed in the course of investigating corrosion-fatigue crack initiation in Ti-6A1-4V hip prostheses fabricated using three different processes. Extensive scanning electron microscopy (SEM) was used to document this new mechanism as well as the other FCI mechanisms operating. Grain egression entails the fracture and egression of primary α grains from the surface of the sample, resulting in a sharp pit that subsequently acts as the site of crack initiation. The different sizes and morphologies of the grain-egression sites observed are very similar to the sizes and morphologies of the pri-mary α grains resulting from the three different fabrication processes, providing further evidence for grain egression as an operative FCI mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Takemoto, KL. Jing, T. Tsakalakos, S. Weissmann, and I.R. Kramer:Metall. Trans. A, 1983, vol. 14A, pp. 127–32.

    Google Scholar 

  2. G.R. Leverant, B.S. Langer, A. Yuen, and S.W. Hopkins:Metall. Trans. A, 1979, vol. 10A, pp. 251–57.

    CAS  Google Scholar 

  3. J.E. Hack and G.R. Leverant: Residual Stress Effects in Fatigue, ASTM STP 776, ASTM, 1982, pp. 204–23.

  4. C. Gerdes and G. Luetjering:Shot Peening, Proc. 2nd Int. Conf. on Shot Peening, ICSP-2, SAE, Warrendale, PA, 1984, pp. 175–80.

    Google Scholar 

  5. L. Wagner and G. Luetjering:Shot Peening, Proc. 2nd Int. Conf. on Shot Peening, ICSP-2, SAE, Warrendale, PA, 1984, pp. 194–200.

    Google Scholar 

  6. L. Wagner and G. Luetjering:Shot Peening, Proc. 2nd Int. Conf. on Shot Peening, ICSP-2, SAE, Warrendale, PA, 1984, pp. 201–07.

    Google Scholar 

  7. A.W. Bowen and C.A. Stubbington:Titanium Science and Technology, Plenum Press, New York, NY, 1973, vol. 3, pp. 2097–108.

    Google Scholar 

  8. M. Pcters, A. Gysler, and G. Luetjering:Titanium Science '80, Science and Technology, Plenum Press, New York, NY, 1980, vol. 3, pp. 1777–86.

    Google Scholar 

  9. C.A. Stubbington:AGARD Conf. Proc. No. 185, NASA, Langley Field, VA, 1976, pp. 140–57.

    Google Scholar 

  10. C.A. Stubbington and A.W. Bowen:J. Mater. Sci., 1974, vol. 9, pp. 941–47.

    Article  CAS  Google Scholar 

  11. M.A. Imam and C. M. Gilmore:Metall. Trans. A, 1983, vol. 14A, pp. 233–40.

    Google Scholar 

  12. C. M. Gilmore and M.A. Imam:Titanium and Titanium Alloys, Plenum Press, New York, NY, 1982, pp. 637–48.

    Google Scholar 

  13. J.J. Lucas:Titanium Science and Technology, Plenum Press, New York, NY, 1973, pp. 2081–85.

    Google Scholar 

  14. M. Pcters, A. Gysler, and G. Lütjering:Metall. Trans. A, 1984, vol. 15A, pp. 1597–605.

    Google Scholar 

  15. D.K. Benson, J.C. Grosskreutz, and G.G. Shaw:Metall. Trans., 1972, vol. 3 (211), pp. 1239–48.

    Article  CAS  Google Scholar 

  16. A.M. Freudenthal:Eng. Fract. Mech., 1974, vol. 6, pp. 775–93.

    Article  CAS  Google Scholar 

  17. D.F. Neal and P.A. Blenkinsop:Acta Metall., 1976, vol. 24, pp. 59–63.

    Article  CAS  Google Scholar 

  18. J. Ruppen, B. Bhowal, D. Eylon, and A.J. McEvily: Fatigue Mechanisms, ASTM STP 675, ASTM, 1979, pp. 47–68.

  19. A. Puskar and S.A. Golovin:Fatigue in Materials: Cumula- tive Damage Process, Elsevier, New York, NY, 1985, pp. 233–39.

    Google Scholar 

  20. R.K. Steele and A.J. McEvily:Titanium and Titanium Alloys, Plenum Press, New York, NY, 1982, pp. 589–600.

    Google Scholar 

  21. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch:Metall. Trans. A, 1986, vol. 17A, pp. 1935–47.

    CAS  Google Scholar 

  22. J.C. Williams:Deformation, Processing, and Structure, ASM, Metals Park, OH, 1982, pp. 279–354.

    Google Scholar 

  23. A.W. Bowen:Titanium Science and Technology, Plenum Press, New York, NY, 1973, vol. 2, pp. 1271–81.

    Google Scholar 

  24. J.L. Gilbert: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1987.

    Google Scholar 

  25. ASTM Designation: F-136-79.

  26. M. Semlitsch and B. Panic:Eng. Med., 1983, vol. 12(4), pp. 185–98.

    CAS  Google Scholar 

  27. L.E. Sloter and H.R. Piehler:Corrosion and DegrActation of Implant Materials, ASTM STP 684, ASTM, 1979, pp. 328–41.

  28. D.L. Davidson:Fatigue Mechanisms, ASTM STP 675, 1979, pp. 254–75.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, J.L., Piehler, H.R. Grain egression: A new mechanism of fatigue-crack initiation in Ti-6Al-4V. Metall Trans A 20, 1715–1725 (1989). https://doi.org/10.1007/BF02663203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663203

Keywords

Navigation