Skip to main content
Log in

The influence of copper precipitation and plastic deformation hardening on the impact-transition temperature of rolled structural steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Commercial electric arc melted low-carbon steels, provided as I beams, were characterized both microstructurally and mechanically in the as-rolled, copper precipitation, and plastically pre-deformed conditions. Inclusion size distribution, ferrite grain size, pearlite volume fraction, precipitated volume fraction of copper, and size distribution of these precipitates were deter-mined by conventional quantitative optical and electron metallographic techniques. From the tensile tests conducted at a strain rate of 10-3 s-1 and impact Charpy V-notched tests carried out, stress/strain curves, yield stress, and impact-transition temperature were obtained. The spe-cific fractographic features of the fracture surfaces also were quantitatively characterized. The increases in yield stress and transition temperature experienced upon either aging or work hard-ening were related through empirical relationships. These dependences were analyzed semi-quantitatively by combining microscopic and macroscopic fracture criteria based on measured fundamental properties (fracture stress and yield stress) and observed fractographic parameters (crack nucleation distance and nuclei size). The rationale developed from these fracture criteria allows the semiquantitative prediction of the temperature transition shifts produced upon aging and work hardening. The values obtained are of the right order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K.J. Irvine, F.B. Pickering, and T. Gladman:JISI, 1967, vol. 205, p. 161.

    CAS  Google Scholar 

  2. F.B. Pickering:Proc. Int. Conf. on H.S.L.A. Steels, Union Carbide Corp., New York, NY, 1977, p. 9.

    Google Scholar 

  3. T. Gladman, D. Dulien, and I.D. Mclvor:Proc. of Int. Conf. on H.S.L.A. Steels, Union Carbide Corp., New York, NY, 1977, p. 32.

    Google Scholar 

  4. W.B. Morrison, B. Mintz, and R.C. Cochrane: British Steel Cor- poration Conference, York, England, 1976, paper 1.

  5. F.B. Pickering:Physical Metallurgy and the Design of Steels, Applied Science Publishers, Ltd., London, 1978, p. 6.

    Google Scholar 

  6. F.B. Pickering:Hardenability Concepts with Applications to Steel, D.V. Drane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, p. 188.

    Google Scholar 

  7. J.M. Woodhead:Proc. Centenary Conf. of the Department of Metallurgy of Sheffield, TMS, London, 1984, p. 172.

    Google Scholar 

  8. D.H. Kirkwood:Acta Metall., 1970, vol. 18, p. 563.

    Article  CAS  Google Scholar 

  9. T. Hirata and D.H. Kirkwood:Acta Metall., 1977, vol. 25, p. 1425.

    Article  CAS  Google Scholar 

  10. A.R. Rosenfield and G.T. Hahn:Trans. ASM, 1966, vol. 59, p. 962.

    CAS  Google Scholar 

  11. W. Hussman and A. Krisch:CIT, 1973, no. 2, p. 371.

  12. J. Gil Sevillano, J.M. Rodríguez Ibabe, and A. Martín Meizoso:Proc. 8th Int. Wheelset Congress, Madrid, 1985, vol. I-2, p. 1.

  13. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, p. 13.

    Article  Google Scholar 

  14. J.R. Rice and G.R. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, p. 1.

    Article  Google Scholar 

  15. D.M. Tracey:J. Eng. Mater. Techol., 1976, vol. 98, p. 146.

    Google Scholar 

  16. K.H. Schwalbe:J. Eng. Mater. Techol., 1977, vol. 99, p. 186.

    Google Scholar 

  17. J.R. Rice and M.A. Johnson:Inelastic Behaviour of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill, New York, NY, 1970, p. 691.

    Google Scholar 

  18. R.M. McMeeking:J. Mech. Phys. Solids, 1977, vol. 25, p. 357.

    Article  CAS  Google Scholar 

  19. F.M. Beremin:Metall. Trans. A, 1983, vol. 14A, pp. 2277–87.

    CAS  Google Scholar 

  20. A.G. Evans:Metall. Trans. A, 1983, vol. 14A, pp. 1349–55.

    CAS  Google Scholar 

  21. K. Wallin:Eng. Fract. Mech., 1985, vol. 22, p. 149.

    Article  Google Scholar 

  22. S.T. Rolfe and J.M. Barson:Fracture and Fatigue Control in Structures, Applications of Fracture Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1977, p. 135.

    Google Scholar 

  23. J. Gil Sevillano:Acta Metall., 1986, vol. 34, p. 1473.

    Article  Google Scholar 

  24. N. Okumura:Met. Sci., 1983, vol. 17, p. 581.

    Article  CAS  Google Scholar 

  25. R.W. Armstrong:Acta Metall., 1967, vol. 15, p. 667.

    Article  CAS  Google Scholar 

  26. C.J. Smithells:Metals Reference Book, Butterworth's, London, 1962, vol. II, pp. 849 and 864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aróztegui, J.J., Urcola, J.J. & Fuentes, M. The influence of copper precipitation and plastic deformation hardening on the impact-transition temperature of rolled structural steels. Metall Trans A 20, 1657–1668 (1989). https://doi.org/10.1007/BF02663199

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663199

Keywords

Navigation