Skip to main content
Log in

Growth dynamics study of the martensitic transformation in Fe-30 pct Ni alloys: Part II. Computer simulation of martensitic growth

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The growth of the shear-type martensitic transformation in an Fe-30 pct Ni alloy has been studied using molecular dynamics (MD) computer simulations. A semiempirical method is used to construct the interatomic potential including the conduction electron volume-dependent en-ergy to fit the experimental data of both austenite and martensite phases. A volume variation method is derived to calculate the volume-dependent forces in cooperation with the pairwise forces to govern the motions of atoms. The effect of strain conditions on the growth rate of the martensitic transformation has been investigated by varying the average atomic density in the simulation box. The computer simulations indicate that the increasingly severe strain conditions result in a decrease of the growth velocity during the transformation, which is, in turn, related to the loss of the net driving force of the transformation. The MD computer simulations also reveal some microscopic features of the martensitic transformations such as the highly aniso-tropic mobility of the interface associated with its orientation and the interface structure, which favors a sharp transition between two phases as opposed to a glassy transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-Z. Yu and P.C. Clapp:Metall. Trans. A, 1989, vol. 20A, pp. 1601–15.

    CAS  Google Scholar 

  2. R.F. Bunshah and R.F. Mehl:Trans. AIME, 1953, vol. 197, pp. 1251–58.

    Google Scholar 

  3. H. Beisswenger and E. Scheil:Arch. Eisenhüttenwes., 1956, vol. 27, pp. 413–20.

    CAS  Google Scholar 

  4. K. Mukherjee:Trans. TMS-AIME, 1968, vol. 242, pp. 1495–501.

    CAS  Google Scholar 

  5. P.C. Clapp and J. Rifkin:Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS-AIME, Warrendale, PA, 1982, pp. 1165–69.

    Google Scholar 

  6. P.C. Clapp and J. Rifkin:Proc. Mater. Res. Soc. Symp., 1983, vol. 21, pp. 643–56.

    Google Scholar 

  7. F. Seitz:The Modern Theory of Solids, McGraw-Hill Book Com- pany, New York, NY, 1940.

    Google Scholar 

  8. M. Born and K. Huang:Dynamical Theory of Crystal Lattice, Clarendon Press, Oxford, 1968, pp. 129–65.

    Google Scholar 

  9. K. Maeda, V. Vitek, and A.P. Sutton:Acta Metall., 1982, vol. 30, pp. 2001–10.

    Article  CAS  Google Scholar 

  10. E.S. Machlin:Acta Metall., 1974, vol. 22, pp. 95–121.

    Article  CAS  Google Scholar 

  11. A.J. Goldman and C.N.J. Wagner:Acta Metall., 1963, vol. 11, pp. 405–13.

    Article  CAS  Google Scholar 

  12. L. Kaufman and M. Cohen:Trans. AIME, 1956, vol. 206, pp. 1393–401.

    Google Scholar 

  13. Z.S. Basinski, M.S. Duesbery, A.P. Pogany, and R. Taylor:Can. J. Phys., 1970, vol. 48, pp. 1480–89.

    CAS  Google Scholar 

  14. G.A. Alers, J.R. Neighbours, and H. Sato:J. Phys. Chem. Solids, 1960, vol. 13, pp. 40–45.

    Article  CAS  Google Scholar 

  15. A.J. Goldman and W.D. Robertson:Acta Metall., 1964, vol. 12, pp. 1265–75.

    Article  CAS  Google Scholar 

  16. G. Simmons and H. Wang:Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971, pp. 9–13.

    Google Scholar 

  17. G.E. Dieter:Mechanical Metallurgy, 2nd ed., McGraw-Hill, Inc., New York, NY, 1976, pp. 49–66.

    Google Scholar 

  18. J P Hirth and J. Lothe:Theory of Dislocations, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1982, pp. 310–13.

    Google Scholar 

  19. G. Kurdjumov and G. Sachs:Z. Physik., 1930, vol. 64, pp. 325–43.

    Article  Google Scholar 

  20. Z. Nishiyama:Sci. Rep., Tohoku University, Sendai, Japan, Ser. 1, 1934-1935, pp. 638-64.

  21. M.S. Wechsler, D.S. Lieberman, and T.A. Read:Trans. AIME, 1953, vol. 197, pp. 1503–15.

    Google Scholar 

  22. J.S. Bowles and J.K. Mackenzie:Acta Metall., 1954, vol. 2, pp. 129–47 and 224-34.

    Article  CAS  Google Scholar 

  23. J.F. Breedis and C. M. Wayman:Trans. AIME, 1962, vol. 224, pp. 1128–33.

    CAS  Google Scholar 

  24. M.W. Finnis and J.E. Sinclair:Phil. Mag., 1984, vol. A50, pp. 45–55.

    Google Scholar 

  25. M.S. Daw and M.I. Baskes:Phys. Rev., 1984, vol. B29, pp. 6443–53.

    Google Scholar 

  26. C.L. Magee: inPhase Transformation, ASM, Metals Park, OH, 1970, pp. 115–56.

    Google Scholar 

  27. P.C. Clapp:Phys. Status SolidiB, 1973, vol. 57, pp. 561–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Graduate Research Assistant with the Department of Metallurgy, University of Connecticut

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, ZZ., Clapp, P.C. Growth dynamics study of the martensitic transformation in Fe-30 pct Ni alloys: Part II. Computer simulation of martensitic growth. Metall Trans A 20, 1617–1629 (1989). https://doi.org/10.1007/BF02663195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663195

Keywords

Navigation