Skip to main content
Log in

Trapping of hydrogen and helium at grain boundaries in nickel: An atomistic study

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Atomistic computer simulations of the trapping of hydrogen and helium at defect free grain boundaries in nickel are presented. Three symmetrical tilt boundaries that encompass a number of compact polyhedra of atoms are considered as regions of potential trapping sites. By employing the structural unit model, these boundaries are shown to be representative of a wide range of grain boundary structures. A general correspondence of trap locations in regions of expansion for both hydrogen and helium has been found; however, the binding energy for helium trapping is much greater than that for hydrogen. Consequently, clean grain boundaries in nickel appear to be important trapping sites for helium, but not significant sites for hydrogen binding. These results are consistent with experimental autoradiography, thermal desorption, and transmission electron microscopy observations. They imply that grain boundary trapping plays an important role in mechanisms of helium embrittlement, but not in hydrogen embrittlement of nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reynolds:Manchester Litt. Phil. Soc., 1874, vol. 13, p. 93.

    Google Scholar 

  2. D. E. Hughes:Scin. Amer. Supplement, July 1880, vol. 237.

  3. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, p. 861.

    CAS  Google Scholar 

  4. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 59.

    Google Scholar 

  5. R. A. Oriani:Am. Rev. Mater. Sci., 1978, vol. 8, p. 327.

    Article  CAS  Google Scholar 

  6. N. Bandyopadhyay, Jun Kameda, and C. J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, p. 881.

    Google Scholar 

  7. Jun Kameda and C. J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, p. 903.

    Google Scholar 

  8. D.G. Westlake:Trans. ASM, 1969, vol. 62, p. 1000.

    CAS  Google Scholar 

  9. C.D. Beachem:Metall. Trans., 1972, vol. 3, p. 437.

    Article  CAS  Google Scholar 

  10. G. C. Smith: inHydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, p. 485.

    Google Scholar 

  11. T. Matsumoto and H.K. Birnbaum: inHydrogen in Metals, Trans. Japan Inst. Metals Suppl., 1980, vol. 21, p. 493.

    Google Scholar 

  12. M. H. Kamdar: inProc. 2nd Int. Congress Hydrogen in Metals, Pergamon Press, Oxford, paper 3D10, 1977.

    Google Scholar 

  13. J. Eastman, T. Matsumoto, N. Narita, F. Heubaum, and H.K. Birnbaum: inHydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., TMS-AIME, 1981, p. 397.

  14. R.M. Latanision, M. Kurkela, and F. Lee: inHydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, 1981, p. 379.

  15. H.K. Birnbaum: inAtomistics of Fracture, R.M. Latanision and J. R. Pickens, eds., Plenum Press, New York, NY, 1983, p. 733.

    Google Scholar 

  16. G.J. Thomas: inHydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, 1981, p. 77.

  17. J. Chene, J. Ovejevo-Garcia, C. Paes de Oliviera, M. Aucouturier, and P. Lacombe:J. Micros. Sp. Electr., 1979, vol. 4, p. 37.

    CAS  Google Scholar 

  18. D. G. Atteridge, L. A. Chariot, A. B. Johnson, Jr., J. R. Remark, and R. E. Westerman:Proc. Int. Conf. on Radiation Effects and Tritium Technology for Fusion Reactors II Conf.-750989, 1976, p. 307.

  19. G.J. Thomas, W. A. Swansiger, and M.I. Baskes:J. Appl. Phys., 1979, vol. 50, p. 6942.

    Article  CAS  Google Scholar 

  20. J.H. Evans, A. van Veen, J.Th. M. de Hosson, R. Bullough, and J.R. Willis:J. Nucl. Mater., 1984, vol. 125.

  21. W. D. Wilson, C. L. Bisson, and M.I. Baskes:Phys. Rev. B, 1981, vol. 24, p. 5616.

    Article  CAS  Google Scholar 

  22. M. I. Baskes and W. D. Wilson:Phys. Rev. B, 1983, vol. 27, p. 2210.

    Article  CAS  Google Scholar 

  23. G. J. Thomas and R. Bastasz:J. Appl. Phys., 1981, vol. 52, p. 6426.

    Article  CAS  Google Scholar 

  24. M. I. Baskes and C. F. Melius:Zeit. Phys. Chem. Neue Folge, 1979, vol. 116, p. 289.

    Google Scholar 

  25. C. L. Bisson and W. D. Wilson:Tritium Technology in Fission, Fusion and Isotopic Applications, American Nuclear Society National Topical Conf., Dayton, OH, 1980, p. 78.

    Google Scholar 

  26. M. I. Baskes, C. F. Melius, and W. D. Wilson: inHydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, p. 67.

    Google Scholar 

  27. M.I. Baskes, C. F. Melius, and W. D. Wilson: inInteratomic Potentials and Crystalline Defects, J.K. Lee, ed., TMS-AIME, Warrendale, PA, 1981, p. 249.

    Google Scholar 

  28. J. Th. M. de Hosson, A. W. Sleeswyk, L. M. Caspers, W. Van Heugten, and A. van Veen:Solid State Comm., 1976, vol. 18, p. 479.

    Article  Google Scholar 

  29. F. van d. Berg, W. van Heugten, L. M. Caspers, A. van Veen, and J.Th. M. de Hosson:Solid State Comm., 1977, vol. 24, p. 193.

    Article  Google Scholar 

  30. J. Th. M. de Hosson, J. R. Heringa, S. W. Schapink, J. H. Evans, and A. van Veen:Surface Science, 1984, vol. 144.

  31. V. Vitek, A. P. Sutton, D. A. Smith, and R. C. Pond: inGrain Bound-ary Structure and Kinetics, ASM, Metals Park, OH, 1980, p.115.

    Google Scholar 

  32. R.W. Balluffi:Metall. Trans. A, 1982, vol. 13A, p. 2069.

    Google Scholar 

  33. A. P. Sutton:Int. Metals Reviews, in press.

  34. A. P. Sutton and V. Vitek:Phil. Trans. Roy. Soc. London, 1983, vol. A309, pp. 1, 37, 55.

    Article  Google Scholar 

  35. M. F. Ashby, F. Spaepen, and S. Williams:Acta Metall., 1978, vol. 26, p. 1647.

    Article  CAS  Google Scholar 

  36. R.C. Pond, D.A. Smith, and V. Vitek:Acta Crystall. A, 1979, vol. 35, p. 689.

    Article  Google Scholar 

  37. A. P. Sutton and V. Vitek:Acta Metall., 1982, vol. 30, p. 2033.

    Google Scholar 

  38. V. Vitek, A. P. Sutton, Gui Jin Wang, and D. Schwartz:Scripta Metall., 1983, vol. 17, p. 183.

    Article  CAS  Google Scholar 

  39. Gui Jing Wang, A.P. Sutton, and V. Vitek:Acta Metall., 1984, vol. 32, p. 1093.

    Article  CAS  Google Scholar 

  40. W. D. Wilson, M.I. Baskes, and M.S. Daw: inAdvances in the Mechanics and Physics of Surfaces 2, R. M. Latanision and T. E. Fischer, eds., Harwood Academic Publishers, Chur, Switzerland, 1983, p. 1.

    Google Scholar 

  41. M.I. Baskes and C. F. Melius:Phys. Rev. B, 1979, vol. 20, p.3197.

    Article  Google Scholar 

  42. C.F. Melius, C. L. Bisson, and W. D. Wilson:Phys. Rev. B, 1978, vol. 18, p. 1647.

    Article  CAS  Google Scholar 

  43. Computational Solid State Physics, F. Herman, N.W. Dalton, and T.R. Koehler, eds., Plenum Press, New York, NY, 1972.

    Google Scholar 

  44. Computer Simulation of Solids, C. R. A. Catlow and W. C. Machrodt, eds., Springer Verlag, Berlin, 1982.

    Google Scholar 

  45. J. R. Beeler, Jr.:Radiation Effects Computer Experiments, Defects in Solids 13. S. Amelinckx, R. Gevers, and J. Nihoul, eds., North-Holland Publishing Co., Amsterdam, 1983.

    Google Scholar 

  46. C.F. Melius, C.L. Bisson, and W. D. Wilson:Phys. Rev., 1978, vol. B18, p. 1647.

    Google Scholar 

  47. R.W. Balluffi and R. Brokman:Scripta Metall., 1983, vol. 17, p. 1027.

    Article  CAS  Google Scholar 

  48. I. Herbeuval and M. Biscondi:C.R. Hebd. Seanc. Acad. Sci., Paris, 1971, vol. C273, p. 1416.

    Google Scholar 

  49. H. Fukushima and H. K. Birnbaum:Acta Metall., 1984, vol. 32, p. 851.

    Article  CAS  Google Scholar 

  50. I. M. Robertson, T. Tabata, W. Wei, F. Henbam, and H. K. Birnbaum:Scripta Metall., 1984, vol. 18, p. 841.

    Article  CAS  Google Scholar 

  51. T. Tabata and H. K. Birnbaum:Scripta Metall., 1983, vol. 17, p. 947.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskes, M.I., Vitek, V. Trapping of hydrogen and helium at grain boundaries in nickel: An atomistic study. Metall Trans A 16, 1625–1631 (1985). https://doi.org/10.1007/BF02663018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663018

Keywords

Navigation