Skip to main content
Log in

Biaxial path dependence of deformation substructure of type 304 stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Although martensitic transformations in austenitic stainless steels have been studied rather thoroughly for uniaxial monotonie and cyclic loading, data are scant for biaxially loaded specimens. In particular, recent nonproportional straining experiments have indicated a significant increase in cyclic hardening beyond that observed in uniaxial tests at equivalent strain levels. In this paper, a link is made between the additional hardening and microstructural uniformity of transformation product. This link is expressed through a micromechanical viewpointvia increased latent hardening associated with rotation of the principal stress and plastic strain rate directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Y. Zamrik and R. E. Frishmuth :Experimental Mechanics, 1973, pp. 204-08.

  2. B.N. Leis and J.H. Laflen:J. Engr. Math. Tech., 1980, vol. 102, pp. 127–34.

    Article  Google Scholar 

  3. D. L. McDowell:Proc. of the Int. Conf. on Constitutive Laws for Engineering Materials, C. S. Desai and R.H. Gallagher, eds., Tucson, AZ, 1983, pp. 125-32.

  4. K. Kanazawa, K. J. Miller, and M. W. Brown:Fatigue of Engineering Materials and Structures, 1979, vol. 2, pp. 217–28.

    Article  CAS  Google Scholar 

  5. H. S. Lamba: TAM Report No. 413, Department of Theoretical and Applied Mechanics, University of Illinois of Urbana-Champaign, 1976.

  6. D. L. McDowell: Report No. 107, Design and Materials Division, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1983.

  7. H. J. Kestenbach and M. A. Meyers:Metall. Trans. A, 1976, vol. 7A, p. 1943.

    CAS  Google Scholar 

  8. J.P. Bressaneelli and A. Moskowitz:Metall. Trans., ASM, 1966, vol. 59, p. 223.

    Google Scholar 

  9. P. C. Maxwell, A. Goldberg, and J. C. Shyne:Metall. Trans., 1974, vol. 5, p. 1305.

    Article  CAS  Google Scholar 

  10. P. L. Mangonon and G. Thomas:Metall. Trans., 1970, vol. 1, p. 1577.

    Article  CAS  Google Scholar 

  11. H.J. Kestenbach:Phil. Mag., 1977, vol. 36, p. 1509.

    Article  CAS  Google Scholar 

  12. D.L. McDowell and D.F. Socie: ASTM STP 853, 1985, pp. 64-87.

  13. L.E. Waill: Report No. 108, Design and Materials Division, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1983.

  14. M. W. Brown and K. J. Miller:Fatigue of Engineering Materials and Structures, 1979, vol. 1, pp. 93–106.

    Article  CAS  Google Scholar 

  15. K. C. Liu and W. L. Greenstreet:Constitutive Equations in Visco- plasticity: Computational and Engineering Aspects, AMD, ASME, 1976, vol. 20, pp. 35–56.

    CAS  Google Scholar 

  16. S.S. Hecker:Constitutive Equations in Viscoplasticity: Com- putational and Engineering Aspects, AME, ASME, 1976, vol. 20, pp. 1–32.

    CAS  Google Scholar 

  17. A. Phillips, J.L. Tang, and M. Ricciuti:Acta Mechanica, 1974, vol. 20, pp. 23–39.

    Article  Google Scholar 

  18. P. Lukas and J. Polak:Proc. of the Symp. on Work Hardening in Tension and Fatigue, AIME, Cincinnati, OH, 1975, pp. 177–205.

    Google Scholar 

  19. R. W. Landgraf:Proc. of the Symp. on Work Hardening in Tension and Fatigue, AIME, Cincinnati, OH, 1975, pp. 240–59.

    Google Scholar 

  20. D. Nouailhas, H. Policella, and H. Kaczmarek:Proc. of the Int. Conf. on Constitutive Laws for Engineering Materials, C. S. Desai and R. H. Gallagher, eds., Tucson, AZ, 1983, pp. 45-49.

  21. J. R. Patel and M. Cohen:Acta Metall., 1953, vol. 1, p. 531.

    Article  CAS  Google Scholar 

  22. D. Hull and D. J. Bacon:Introduction to Dislocations, 3rd ed., Pergamon Press, New York, NY, 1984, p. 110.

    Google Scholar 

  23. J. Weertman:Elementary Dislocation Theory, The MacMillan Co., Toronto, Canada, 1964, p. 146.

    Google Scholar 

  24. H. P. Klug and L. E. Alexander:X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, 1974, ch. 7.

  25. R. J. Asaro:J. Appl. Mech., 1983, vol. 50, pp. 921–34.

    Article  Google Scholar 

  26. J.W. Hutchinson:Proc. Roy. Soc, Series A, 1976, vol. 319, pp. 247–72.

    Article  Google Scholar 

  27. D.L. McDowell:ASME Journal of Applied Mechanics, 1985, vol. 52, pp. 298–302.

    Article  Google Scholar 

  28. D.L. McDowell:ASME Journal of Applied Mechanics, 1985, vol. 52, pp. 303–08.

    Article  Google Scholar 

  29. D.L. McDowell:Proc. 1985 SEM Spring Conf. on Experimental Mechanics, Las Vegas, NV, 1985, pp. 229-36.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, D.L., Stahl, O.K., Stock, S.R. et al. Biaxial path dependence of deformation substructure of type 304 stainless steel. Metall Trans A 19, 1277–1293 (1988). https://doi.org/10.1007/BF02662589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662589

Keywords

Navigation