Skip to main content
Log in

Dislocation structures in the strain localized region in fatigued 85/15 brass

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The correlation between the formation of extrusions and the dislocation structures in polycrystalline 85/15 brass subjected to a long term stress cycling with a low strain amplitude in vacuum was examined by means of transmission electron microscopy. The overall dislocation structures consisted of two types of structures,i.e., copper-type and 70/30 brass-type. Within them the strain localized regions bounded by two closely located active slip layers were frequently observed. In these boundary layers appeared a fringe pattern which was suggestive of intensive slip. Extrusions were formed in close association with the two closely located layers, and the initiation and growth of fatigue cracks occurred along one of them. On the basis of these observations, the mechanism of extrusion formation and of fatigue crack initiation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lukáš, M. Klesnil, and J. Krejci:Phys. Status Solidi, 1968, vol. 27, pp. 545–58.

    Article  Google Scholar 

  2. M. Klesnil and P. Lukáš:Phil. Mag., 1968, vol. 17, pp. 1295–98.

    Article  CAS  Google Scholar 

  3. P. Lukáš and M. Klesnil:Phys. Status Solidi, 1970, vol. 37, pp. 833–42.

    Article  Google Scholar 

  4. K. Katagiri, A. Omura, K. Koyanagi, J. Awatani, T. Shiraishi, and H. Kaneshiro:Metall. Trans. A, 1977, vol. 8A, pp. 1769–73.

    CAS  Google Scholar 

  5. A. H. Cottrell and D. Hull:Proc. Roy. Soc. A, 1957, vol. 242, pp. 211–13.

    Article  Google Scholar 

  6. W. A. Wood:Fatigue in Aircraft Structure, Academic Press Inc., 1956, pp. 1-18.

  7. N. F. Mott:Acta Metall., 1958, vol. 6, pp. 195–97.

    Article  CAS  Google Scholar 

  8. J. G. Antonopoulos, L. M. Brown, and A. T. Winter:Phil. Mag., 1976, vol. 34, pp. 549–63.

    Article  CAS  Google Scholar 

  9. K. Tanaka and T. Mura:Trans. ASME, 1981, vol. 48, pp. 97–103.

    Google Scholar 

  10. U. Essmann, U. Goesele, and H. Mughrabi:Phil. Mag., 1981, vol. 44, pp. 405–26.

    CAS  Google Scholar 

  11. H. Mughrabi, R. Wang, K. Differt, and U. Essmann: ASTM STP 811, 1983, pp. 5-45.

  12. D. Kuhlmann-Wilsdorf and C. Laird:Mat. Sci. Eng., 1977, vol. 27, pp. 137–56.

    Article  CAS  Google Scholar 

  13. R. Wang, H. Mughrabi, S. McGovern, and M. Rapp:Mat. Sci. Eng., 1984, vol. 65, pp. 219–33.

    Article  CAS  Google Scholar 

  14. H. Kaneshiro and T. Yafuso:Trans. JSME, 1986, vol. 52, pp. 593–600.

    CAS  Google Scholar 

  15. K. Katagiri, A. Omura, K. Koyanagi, J. Awatani, T. Shiraishi, and H. Kaneshiro: inFracture 1977, Proc. 4th Int. Conf. on Fracture, Waterloo, ON, Canada, 1977, vol. 2, pp. 695-702.

  16. A. J. Ardell:Phil. Mag., 1967, vol. 16, pp. 147–48.

    Article  CAS  Google Scholar 

  17. L. Reimer:Transmission Electron Microscopy, Springer, Berlin, 1984, pp. 347–49.

    Google Scholar 

  18. P.J.E. Forsyth:Proc. Roy. Soc, 1957, vol. 242, pp. 198–242.

    Article  Google Scholar 

  19. P. Neumann:Physical Metallurgy, R. W. Cahn and P. Haasen, eds., Elsevier, Amsterdam, 1983, p. 1553.

    Google Scholar 

  20. P.J. Woods:Phil. Mag., 1973, vol. 28, pp. 155–91.

    Article  CAS  Google Scholar 

  21. J. M. Finney and C. Laird:Phil. Mag., 1975, vol. 31, pp. 339–66.

    Article  CAS  Google Scholar 

  22. A.T. Winter:Phil. Mag., 1974, vol. 30, pp. 719–38.

    Article  CAS  Google Scholar 

  23. H. Mughrabi, F. Ackermann, and K. Herz: ASTM STP 675, 1974, pp. 69-105.

  24. Z. S. Basinski, R. Pascual, and S. J. Basinski:Acta Metall., 1983, vol. 31, pp. 591–602.

    Article  Google Scholar 

  25. C. Laird and D. J. Duquette: inCorrosion Fatigue, A. J. McEvily and R.W. Staehle, eds., Nat. Ass. of Corr. Eng., Houston, TX, 1972, pp. 88–117.

    Google Scholar 

  26. A. J. Kennedy:Process of Creep and Fatigue in Metals, John Wiley and Sons, Inc., New York, NY, 1963, pp. 331–46.

    Google Scholar 

  27. P. Neumann:Zeitschrift für Metalkunde, 1967, vol. 58, pp. 780–89.

    Google Scholar 

  28. H.N. Hahn and D.J. Duquette:Acta Metall., 1978, vol. 26, pp. 279–87.

    Article  CAS  Google Scholar 

  29. P. Lukas and M. Klesnil:Phys. Status Solidi, 1971, vol. 5, pp. 247–58.

    Article  CAS  Google Scholar 

  30. K. Katagiri, J. Awatani, A. Omura, K. Koyanagi, and T. Shiraishi: ASTM STP 675, 1979, pp. 106-28.

  31. W.H. Kim and C. Laird:Acta Metall., 1978, vol. 26, pp. 777–87, pp. 789–99.

    Article  CAS  Google Scholar 

  32. T. Tanaka and M. Kosugi: Extended Abstracts, ASTM-1984 Symp. Fatigue, Dallas, TX, ASTM STP, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneshiro, H., Katagiri, K., Mori, H. et al. Dislocation structures in the strain localized region in fatigued 85/15 brass. Metall Trans A 19, 1257–1262 (1988). https://doi.org/10.1007/BF02662586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662586

Keywords

Navigation