Skip to main content
Log in

A “Hydrogen partitioning” model for hydrogen assisted crack growth

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A “hydrogen partitioning” model has been developed to account for the pressure and temperature dependence for hydrogen-assisted crack growth. The model gives explicit recognition to the role of hydr en-microstructure interactions in determining the distribution (or partitioning) of hydrogen among the various microstructural elements (principally between the prior-austenite grain boundaries and the matrix) and the rate of crack growth along the elements. It also takes into account the role of various rate controlling processes in determining the rate that hydrogen is being supplied to the fracture process (or embrittlement) zone. Quantitative assessment of the model indicates very good agreements between the model predictions and the observed crack growth responses for AISI 4340 and 4130 steels tested in hydrogen and for AISI 4340 steel tested in hydrogen sulfide. This model accurately characterizes the reduction in crack growth rate and the concomitant change in fracture mode at “high” temperatures. Through its integration with the earlier models, based on rate controlling processes, the model predicts the pressure and temperature dependence for K-independent crack growth over the entire range of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Williams and H. G. Nelson:Metall. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  2. H. G. Nelson, D. P. Williams, and A. S. Tetelman:Metall. Trans., 1971, vol. 2, p. 953.

    CAS  Google Scholar 

  3. H. G. Nelson and D. P. Williams: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehle, J. Hochmann, R. D. McCright, and J. E. Slater, eds., NACE-5, Houston, TX, 1978, p. 390.

    Google Scholar 

  4. R. P. Gangloff and R. P. Wei:Metall. Trans. A, 1977, vol. 8A, p. 1043.

    CAS  Google Scholar 

  5. R. P. Gangloff and R. P. Wei: ASTM STP 645, American Society for Testing and Materials, Philadelphia, PA, 1978, p. 87.

  6. G. W. Simmons, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1978, vol. 9A, p. 1147.

    CAS  Google Scholar 

  7. M. C. Lu, P. S. Pao, N. H. Chan, K. Klier, and R. P. Wei: in Pro- ceedings of Second Japan Institute of Metals International Symposium (JIMIS-2), Hydrogen in Metals, Suppl. to Trans. Japan Inst. Metals, 1980, vol. 21, p. 449.

  8. N. H. Chan, K. Klier, and R. P. Wei: in Proceedings of Second Japan Institute of Metals International Symposium (JIMIS-2), Hydrogen in Metals, Suppl. to Trans. Japan Inst. Metals, 1980, vol. 21, p. 305.

  9. M. C. Lu, P. S. Pao, T. W. Weir, G. W. Simmons, and R.P. Wei:Metall. Trans. A, 1980, vol. 12A, p. 805.

    Google Scholar 

  10. R. P. Wei, K. Klier, G. W. Simmons, and Y. T. Chou: inHydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R. F. Hehemann, eds., American Society for Metals, Metals Park, OH, 1984, p. 103.

    Google Scholar 

  11. R. P. Wei: inHydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, p. 677.

    Google Scholar 

  12. H. G. Nelson: NASA TN D-6691, National Aeronautic and Space Administration, 1972.

  13. R. W. Pasco and P. J. Ficalora:Scripta Met., 1980, vol. 15, p. 1019.

    Article  Google Scholar 

  14. R. W. Pasco, K. Sieradzki, and P. J. Ficalora:Scripta Met., 1982, vol. 16, p. 881.

    Article  CAS  Google Scholar 

  15. J. A. Schwarz and H. W. Liu:Scripta Met., 1980, vol. 15, p. 839.

    Article  Google Scholar 

  16. Ming Gao, M. Lu, and R. P. Wei:Metall. Trans. A, 1984, vol. 15A, p. 735.

    CAS  Google Scholar 

  17. Ming Gao: M. S. Thesis, Lehigh University, Bethlehem, PA, 1982.

    Google Scholar 

  18. A. J. Stavros and H. W. Paxton:Metall. Trans., 1970, vol. 1, p. 3049.

    CAS  Google Scholar 

  19. G. Lapasset, J. P. Laurent, M. Aucouturier, and P. Lacombe: inl’Hy- drogen dans les Mètaux Congrès International, Editions Science et Industrie, Paris, 1972, p. 108.

    Google Scholar 

  20. Vassel, G. Lapasset, J. P. Laurent, M. Aucouturier, and P. Locombe:, p. 348.

    Google Scholar 

  21. T. Asaoka, G. Lapasset, M. Aucouturier, and P. Lacombe:Corrosion, 1978, vol. 34, p. 39.

    CAS  Google Scholar 

  22. A. H. Cottrell: inDislocation and Plastic Flow in Crystals, Oxford Press, Amen House, London, 1965.

    Google Scholar 

  23. J. P. Hirth:Metall. Trans. A, 1980, vol. 11A, p. 861.

    CAS  Google Scholar 

  24. J. O’M. Bockris: inStress Corrosion Cracking and Hydrogen Em- brittlement of Iron Base Alloys, R. W. Staehle, J. Hochmann, R. D. McCright, and J. E. Slater, eds., NACE-5, Houston, TX, 1978, p. 286.

    Google Scholar 

  25. Ming Gao: Ph.D. Thesis, Lehigh University, Bethlehem, PA, 1983.

    Google Scholar 

  26. T. W. Weir, G. W. Simmons, R. G. Hart, and R. P. Wei:Scripta Met., 1980, vol. 14, p. 357.

    Article  CAS  Google Scholar 

  27. S. Glasstone, K. J. Laidler, and H. Eyring: in The Theory of Rate Processes, McGraw-Hill, 1948, p. 339.

  28. M. C. Lu, Y. T. Chou, and R. P. Wei: unpublished research, Lehigh University, Bethlehem, PA, 1980.

  29. G. M. Pressouyre and I. M. Bernstein:Metall. Trans. A, 1978, vol. 9A, p. 1571.

    CAS  Google Scholar 

  30. R. Gibala and D. S. DeMegli: inHydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1981, p. 113.

    Google Scholar 

  31. R. Gibala: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R.W. Staehle, J. Hochmann, R. D. McCright, and J. E. Slater, eds., NACE-5, Houston, TX, 1978, p. 244.

    Google Scholar 

  32. A. P. Miodownik:, p. 272.

    Google Scholar 

  33. P. S. Pao and R. P. Wei:Scripta Met., 1971, vol. 11, p. 515.

    Article  Google Scholar 

  34. N. H. Chan, K. Klier, and R. P. Wei:Scripta Met., 1978, vol. 12, p. 1043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Wei, R.P. A “Hydrogen partitioning” model for hydrogen assisted crack growth. Metall Trans A 16, 2039–2050 (1985). https://doi.org/10.1007/BF02662405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662405

Keywords

Navigation