Skip to main content
Log in

The microstructure and fracture of a carburized steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The case microstructure and fracture of a coarse-grained 8620 steel carburized to 1 pet surface carbon are quite sensitive to austenitizing conditions. Reheating martensitic speci-mens below theA cm produces in the case a refined austenitic grain size, a very fine mar-tensite, spherical carbide particles and a minimum of retained austenite and microcrack-ing. Overload fracture through the latter microstructure is transgranular and scanning electron microscopy shows both microvoid coalescence around thecarbide particles and an apparent fine cleavage in other areas. As-carburized specimens and specimens re-austenitized above theA cm developed a case microstructure characterized by a coarse austenitic grain structure in which plate martensite with microcracks developed on cool-ing within a large amount of retained austenite. The overload fracture through this mi-crostructure followed a predominately intergranular path and effectively by-passed the retained austenite and microcracked martensite. Auger electron analysis showed that C and P were present on the intergranular fracture surfaces at concentrations above bulk, an observation consistent with literature reports of P segregation during austenitizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mocarski:Industrial Heating, 1974, vol. 41, p. 58.

    Google Scholar 

  2. D. P. Koistinen:Trans. ASM, 1958, vol. 50, p. 227.

    Google Scholar 

  3. R. F. Kern:Metal Progr., 1972, vol. 103, p. 53.

    Google Scholar 

  4. R. H. Richman and R. W. Landgraf:Met. Trans. A, 1975, vol. 6A, p. 955.

    Article  CAS  Google Scholar 

  5. R. J.Johnson:Metals Eng. Quart., 1975,vol. 15,p. 1.

    Google Scholar 

  6. J. P. Sheehan and M. A. H. Howes: SAE 720268, 1972.

  7. C. A. Apple and G. Krauss:Met. Trans., 1973, vol. 4, p. 1195.

    CAS  Google Scholar 

  8. A. R. Marder and G. Krauss:Trans. ASM, 1967, vol. 60, p. 651.

    CAS  Google Scholar 

  9. G. Krauss and A. R. Marder:Met. Trans., 1971, vol. 2, p. 2343.

    Article  CAS  Google Scholar 

  10. A. R. Marder and A. O. Benscoter:Trans. ASM, 1968, vol. 61, p. 293.

    CAS  Google Scholar 

  11. A. H. Rauch and W. R. Thurtle:Metal Progr., 1956, vol. 69, p. 73.

    Google Scholar 

  12. L. Jena and P. Heich:Met. Trans., 1972, vol. 3, p. 588.

    CAS  Google Scholar 

  13. R. P. Brobst and G. Krauss:Met. Trans., 1974, vol. 5, p. 457.

    CAS  Google Scholar 

  14. Metals Handbook, 8th ed., vol. 7, p. 55, ASM, Metals Park, Ohio, 1972.

  15. J. A. Martin, S. F. Borgese, and A. D. Eberhard::J. Basic Eng., series D, 1966, vol. 88, p. 555.

    Google Scholar 

  16. R. Ticot, J. Mounot, and M. Lluans:Metals Eng. Quart., 1972, vol. 12, p. 39.

    Google Scholar 

  17. M. G. Mendiratta, J. Sasser, and G. Krauss:Met. Trans., 1972, vol. 3, p. 351.

    CAS  Google Scholar 

  18. G. Krauss and C. A. Apple:Proceedings of the Third International Conference on the Strength of Metals and Alloys, vol. 1, p. 441, Cambridge, England, 1973.

  19. H. L. Marcus and P. W. Palmberg:Trans. TMS-AIME, 1969, vol. 245, p. 1664.

    CAS  Google Scholar 

  20. P. W. Palmberg and W. L. Marcus:Trans. ASM, 1969, vol. 62, p. 1016.

    CAS  Google Scholar 

  21. H. L. Marcus, L. H. Hackett, Jr., and P. W. Palmberg: ASTM STP 499, p. 90, 1972.

  22. D. F. Stein, A. Joshi, and R. P. Laforce:Trans. ASM, 1969, vol. 62, p. 776.

    CAS  Google Scholar 

  23. A. Joshi and D. F. Stein: ASTM STP 499, p. 59, 1972.

  24. B. J. Schulz and C. J. McMahon, Jr.: ASTM STP 499, p. 104, 1972.

  25. R. Viswanathan:Met. Trans., 1971, vol. 2, p. 809.

    CAS  Google Scholar 

  26. R. O. Ritchie and J. F. Knott:Acta Met., 1973, vol. 21, p. 639.

    Article  CAS  Google Scholar 

  27. G. W. Simmons and D. J. Dwyer:Surface Sci., 1976, vol. 48, p. 373.

    Article  Google Scholar 

  28. T. W. Hass, J. T. Grant, and G. J. Dooley: inAdsorption-Desorption Phe-nomena, F. Ricca, ed., p. 359, Academic Press, 1972.

  29. H. Ohtani and C. J. McMahon, Jr.:Acta Met., 1975, vol. 23, p. 377.

    Article  CAS  Google Scholar 

  30. S. K. Wallack and G. Krauss: to be published in Proceedings, JIM Symposium,New Aspects of Martensitic Transformation, Kobe, Japan, May 1976.

  31. C. J. McMahon, Jr.:Grain Boundaries in Engineering Materials, J. L. Walter, J. H. Westbrook, and D. A. Woodford, eds., p. 525, Claitor’s, 1975.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Carburizing and Nitriding: Fundamentals, Processes and Properties” held at the Cincinnati Meeting of The Metallurgical Society of AIME, November 11 and 12, 1975 under the sponsorship of the Heat Treatment Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, G. The microstructure and fracture of a carburized steel. Metall Trans A 9, 1527–1535 (1978). https://doi.org/10.1007/BF02661935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661935

Keywords

Navigation