Skip to main content
Log in

Effect of dislocation substructures on fatigue fracture

  • Symposium on Mechanical-Thermal Processing and Dislocation Substructure Strengthening
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of dislocation substructures on fatigue is explored within the following categories: a) the dislocation substructures produced by cycling in annealed material and the effect of cycling on substructures introduced extraneously before cycling; b) hight and low strain fatigue fracture, expressed in terms of Coffin-manson or stress-life plots; and c) the effect of substructure on the mechanisms of crack nucleation and propagation. Usually, cycling is very effective in rearranging substructures introduced extraneously, especially at high strains. Consequently, there is little effect of the substructures on fatigue fracture except under some circumstances at low strains, and also if the agent of introducing the initial substructures has had an effect on the fracture process, for example, by opening cracks at inclusions. Dislocation substructure, however formed, is not significant,per se, to fatigue fracture except in acting as a source of plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Radhakrishnan and P. S. Baburamani:Mater. Sci. Eng., 1975, vol. 17, pp. 283–88.

    Article  CAS  Google Scholar 

  2. D. Cratchley and J. Smith:J. Iron Steel Inst., 1965, vol. 203, pp. 461–67.

    Google Scholar 

  3. N. E. Frost:Metallurgia, 1958, vol. 57, pp. 279–82.

    Google Scholar 

  4. N. E. Frost:Metallurgia, 1960, vol. 62, pp. 85–89.

    CAS  Google Scholar 

  5. H. R. Sander and M. Hempel:Arch. Eisenhuettenw., 1952, vol. 23, pp. 299–320.

    Google Scholar 

  6. P. L. Teed:Aeroplane, 1952, vol. 82, pp. 787–95.

    Google Scholar 

  7. J. P. Romualdi and E. D'Appolonia:Proc. ASTM, 1954, vol. 54, pp. 798–821.

    CAS  Google Scholar 

  8. J. G. Kaufman and E. D'Appolonia:Proc. ASTM, 1955, vol. 55, pp. 999–1014.

    CAS  Google Scholar 

  9. B. Cina:J. Iron Steel Inst., 1958, vol. 190, pp. 144–57.

    CAS  Google Scholar 

  10. J. C. Grosskreutz:Phys. Status Solidi, 1971, vol. 47, pp. 11–31 and 359–96.

    CAS  Google Scholar 

  11. C. Laird: inPlastic Deformation of Materials, R. J. Arsenault, ed., p. 101, Academic Press, New York, N.Y., 1975.

    Google Scholar 

  12. C. Laird: AIME Symposium in Cincinnati, Ohio, Fall Meeting, 1975, in press.

  13. C. E. Feltner and C. Laird:Trans. TMS-AIME, 1968, vol. 242, pp. 1253–57.

    CAS  Google Scholar 

  14. C. E. Feltner and C. Laird:Acta Met., 1967, vol. 15, pp. 1621–32.

    Article  CAS  Google Scholar 

  15. A. J. McEvily and T. L. Johnson:Int. Conference on Fracture, Sendai, Japan, 1965.

  16. C. E. Feltner and C. Laird:Acta Met., 1967, vol. 15, pp. 1633–53.

    Article  CAS  Google Scholar 

  17. C. E. Feltner and C. Laird:Trans. TMS-AIME, 1969, vol. 245, pp. 1372–73.

    CAS  Google Scholar 

  18. C. Laird and C. E. Feltner:Trans. TMS-AIME, 1967, vol. 239, pp. 1074–83.

    CAS  Google Scholar 

  19. C. Laird, J. M. Finney, A. Schwartzman, and R. de la Veaux:J. Testing and Evaluation, 1975, vol. 3, pp. 435–41.

    Article  CAS  Google Scholar 

  20. F. R. Tuler and J. Morrow:Theor. and Applied Mechanics Report No. 239, University of Illinois, Urbana, Ill., 1963.

    Google Scholar 

  21. C. Laird: STP 415, pp. 130–80, ASTM, 1966.

    Google Scholar 

  22. P. Lukáŝ and M. Klesnil:Mater. Sci. Eng., 1973, vol. 11, pp. 345–56.

    Article  Google Scholar 

  23. C. Laird and A. R. Krause: inInelastic Behavior of Solids, M. F. Kanninenet al., eds., pp. 691–715, McGraw-Hill, New York, N.Y., 1970.

    Google Scholar 

  24. J. M. Finney and C. Laird:Phil. Mag., 1975, vol. 31, pp. 339–66.

    CAS  Google Scholar 

  25. A. T. Winter:The Effect of Work-Hardening on the Low Strain Amplitude Fatigue of Copper Crystals, Cavendish Laboratory, Cambridge, 1975.

    Google Scholar 

  26. J. Awatani, K. Katagiri, A. Omura, and T. Shiraishi:Met. Trans. A, 1975, vol. 6A, pp. 1029–34.

    Article  CAS  Google Scholar 

  27. C. Laird and D. J. Duquette: inCorrosion Fatigue: Chemistry, Mechanics and Microstructure, A. J. McEvily and R. W. Staehle, eds., pp. 88–117, Nat. Ass. Corrosion Eng., Houston, Tex., 1972.

    Google Scholar 

  28. E. J. Pattinson and D. S. Dugdale:Metallurgia, 1962, vol. 66, pp. 228–33.

    Google Scholar 

  29. D. H. Avery and W. A. Backofen:Fracture of Solids, pp. 339–82, John Wiley and Sons, New York, N.Y., 1963.

    Google Scholar 

  30. C. Y. Chin and W. A. Backofen:J. Inst. Metals, 1961, vol. 90, pp. 13–17.

    CAS  Google Scholar 

  31. G. A. Miller and W. A. Backofen:Fatigue—An Interdisciplinary Approach, pp. 59–62, Syracuse University Press, Syracuse, N.Y., 1964.

    Google Scholar 

  32. A. J. McEvily, Jr., R. C. Boettner, and A. P. Bond:J. Inst. Metals, 1964–65, vol. 93, pp. 481–82.

    Google Scholar 

  33. S. K. Bhambri:Mater. Sci. Eng., 1975, vol. 21, pp. 273–76.

    Article  CAS  Google Scholar 

  34. P. Shahinian, H. E. Watson, and H. H. Smith:J. Mater., 1972, vol. 7, pp. 527–35.

    Article  CAS  Google Scholar 

  35. G. G. Garrett and J. F. Knott:Met. Trans. A, 1975, vol. 6A, pp. 1663–65.

    Article  CAS  Google Scholar 

  36. L. F. Van Swarm, R. M. Pelloux, and N. J. Grant:Met. Trans. A, 1975, vol. 6A, pp. 45–54.

    Google Scholar 

  37. C. E. Feltner:Phil. Mag., 1965, vol. 12, pp. 1229–48.

    CAS  Google Scholar 

  38. J. M. Finney: Ph.D. Thesis, University of Pennsylvania, Philadelphia, Pa., 1974.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Mechanical-Thermal Processing and Dislocation Substructure Strengthening,” held at the Annual Meeting in Las Vegas, Nevada, on February 23, 1976, under the sponsorship of the TMS/IMD Heat Treating Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laird, C. Effect of dislocation substructures on fatigue fracture. Metall Trans A 8, 851–860 (1977). https://doi.org/10.1007/BF02661566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661566

Keywords

Navigation