Skip to main content
Log in

High strain rate superplasticity of a 25 Wt Pct Cr-7 Wt Pct Ni-3 Wt Pct Mo-0.14 Wt Pct N duplex stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Effects of prior thermomechanical treatments on the superplasticity of a 25 wt pct Cr-7 wt pct Ni-3 wt pct Mo-0.14 wt pct N δ/γ duplex stainless steel have been studied by means of hot tensile testing with constant crosshead speeds. The objective is to increase the strain rate suitable for superplasticity. The strain rate is found to be markedly increased by a special prior treatment,i.e., solution treatment at temperatures in the δ single-phase region with subsequent heavy cold-rolling. In hot tensile tests at 1273 K, elongations greater than 1000 and 300 pct were observed at initial strain rates (έ) of 10−3 to 10−1 s−1 and 1 x 100 s−1, respectively. The results for strain rates 〈10−1 s−1 can be explained in terms of a structural superplastic effect due to grain refinement. In the case of έ 〉 10−1 s−1, transformation superplastic effects due to γ-phase precipitation from the σ-ferrite matrix are also important, especially in the early stages of deformation. In the equiaxedδ/γ microduplex structures during stable superplastic deformation, there exists a mixture of two different structures,i.e., dislocated and recovered/ recrystallized δ grains with a homogeneous dispersion of dislocation-free γ particles. This result shows that dynamic recrystallization ofδ grains occurs locally and intermittently due to the dispersion of relatively hardγ particles. The apparent average grain growth rate during deformation is small compared to static grain growth, because grain refinement due to dynamic recrystallization reduces the superplasticity-enhanced grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Maehara and T.G. Langdon:Mater. Sci. Eng., 1990, vol. A128, pp. 1–13.

    CAS  Google Scholar 

  2. H.W. Hayden, R.C. Gibson, H.F. Metrik, and J.H. Brophy:Trans. ASM, 1967, vol. 60, pp. 3–14.

    CAS  Google Scholar 

  3. R.C. Gibson, H.W. Hayden, and J.H. Brophy:Trans. ASM, 1968, vol. 61, pp. 85–93.

    CAS  Google Scholar 

  4. H.W. Hayden and J.H. Brophy:Trans. ASM, 1968, vol. 61, pp. 542–549.

    Google Scholar 

  5. H.W. Hayden, S. Floreen, and P.D. Goodell:Metall. Trans., 1972, vol. 3, pp. 833–42.

    Article  CAS  Google Scholar 

  6. C.I. Smith, B. Norgate, and N. Ridley:Met. Sci., 1976, vol. 10, pp. 182–88.

    CAS  Google Scholar 

  7. C.I. Smith and N. Ridley:Met. Technol., 1974, vol. 1, pp. 191–98.

    Google Scholar 

  8. Y. Maehara:Tetsu-to-Hagané, 1984, vol. 70, pp. 2168–75;Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 69-76.

    CAS  Google Scholar 

  9. K. Osada, S. Uekoh, and K. Ebato:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 713–18.

    CAS  Google Scholar 

  10. K. Osada, S. Uekoh, T. Tohge, M. Noda, and K. Ebato:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 16–22.

    CAS  Google Scholar 

  11. Y. Maehara and Y. Ohmori:Metall. Trans. A, 1987, vol. 18A, pp. 663–72.

    CAS  Google Scholar 

  12. Y. Maehara:Tetsu-to-Hagané, 1987, vol. 73, pp. 1722–29;Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 705-12.

    CAS  Google Scholar 

  13. P.N. Comeley:Superplasticity in Aerospace, H.C. Heikkenen and T.R. McNelley, eds., TMS, Warrendale, PA, 1988, p. 361.

    Google Scholar 

  14. K. Osada:Proc. 1st Jpn. Int. SAMPE Symp., N. Igata, I. Kimpara, T. Kishi, E. Nakata, A. Okura, and T. Uryu, eds., SAMPE, Nikkan Kogyo Shimbun, Tokyo, 1989, p. 249.

    Google Scholar 

  15. Y. Komizo and Y. Maehara:Tetsu-to-Hagané, 1988, vol. 74, pp. 1657–64;Trans. Jpn. Weld. Soc, 1988, vol. 19, pp. 83-91.

    CAS  Google Scholar 

  16. Y. Maehara, Y. Komizo, and T.G. Langdon:Mater. Sci. Technol., 1988, vol. 4, pp. 669–74.

    CAS  Google Scholar 

  17. W.R. Cannon and T.G. Langdon:J. Mater. Sci., 1983, vol. 18, pp. 1–50.

    Article  CAS  Google Scholar 

  18. K. Ameyama, H. Matsuoka, A. Miyazaki, and M. Tokizane:J. Jpn. Inst. Met., 1989, vol. 53, pp. 991–97.

    CAS  Google Scholar 

  19. K. Tsuzaki, H. Matsuyama, M. Nagao, and M. Maki:J. Jpn. Inst. Met., 1990, vol. 54, pp. 878–87.

    CAS  Google Scholar 

  20. R.A.D. Mackenzie and S.L. Sass:Scripta Metall., 1988, vol. 22, pp. 1907–10.

    Article  Google Scholar 

  21. M. Abe, A. Hiura, K. Ishida, and T. Nishizawa:Tetsu-to-Hagané, 1984, vol. 70, pp. 2025–32.

    CAS  Google Scholar 

  22. E. Sato: Ph.D. Thesis, Tokyo University, Tokyo, 1989.

    Google Scholar 

  23. I. Weiss and J.J. Jonas:Metall. Trans. A, 1979, vol. 10A, pp. 831–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maehara, Y. High strain rate superplasticity of a 25 Wt Pct Cr-7 Wt Pct Ni-3 Wt Pct Mo-0.14 Wt Pct N duplex stainless steel. Metall Trans A 22, 1083–1091 (1991). https://doi.org/10.1007/BF02661102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661102

Keywords

Navigation