Advertisement

Metallurgical Transactions B

, Volume 14, Issue 2, pp 191–205 | Cite as

Experimental study of transverse bed motion in rotary kilns

  • H. Henein
  • J. K. Brimacombe
  • A. P. Watkinson
Process Control

Abstract

Slumping and rolling beds have been studied extensively in a continuous pilot kiln and batch rotary cylinders. Solids investigated include nickel oxide pellets, limestone, sand, and gravel. The effect of variables such as rotational speed, bed depth, cylinder diameter, particle size, and particle shape on bed motion has been determined. For a given material, the different modes of bed motion can be delineated conveniently on a Bed Behavior Diagram which is a plot of bed depthvs rotational speed. The scaling of bed behavior with respect to particle size and cylinder diameter requires similarity of Froude number modified by(D/d p)1/2, and pct fill. Measurements of key variables characterizing slumping and rolling beds have also been made.

Keywords

Metallurgical Transaction Rotational Speed Froude Number Shear Angle Rotary Kiln 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Zablotny:Intl. Chem. Eng., 1965, vol. 5, pp. 360–66.Google Scholar
  2. 2.
    G. Reuter: Ph.D. Thesis, Rheinisch-WestfÄlischen Technischen Hochschule Aachen, 1975.Google Scholar
  3. 3.
    W. Schnabel: Ph.D. Thesis, Rheinisch-WestfÄlischen Technischen Hochschule Aachen, 1977.Google Scholar
  4. 4.
    M. Wahlster, H. G. Jost, H. Serbent, and G. Meyer:Techn. Mitt. Krupp (Forsch.-Ber.), 1963, vol. 21, no. 1, pp. 5–14.Google Scholar
  5. 5.
    K.W. Pearce:J. Inst. Fuel, 1973, vol. 46, pp. 363–71.Google Scholar
  6. 6.
    G. W. J. Wes, A. A. H. Drinkenburg, and S. Stemerding:Powder Tech., 1976, vol. 13, pp. 177–84.CrossRefGoogle Scholar
  7. 7.
    R. Rutgers:Chem. Eng. Sci., 1965, vol. 20, pp. 1079–87.CrossRefGoogle Scholar
  8. 8.
    J. J. Ronco:Industria y Chimica, 1960, vol. 20, pp. 605–14.Google Scholar
  9. 9.
    F. C. Franklin and L.N. Johanson:Chem. Eng. Sci., 1955, vol. 4, pp. 119–29.CrossRefGoogle Scholar
  10. 10.
    A. J. Stepanoff:Gravity Flow of Bulk Solids and Transportation of Solids in Suspension,Wiley, Toronto, 1969, pp. 1–21.Google Scholar
  11. 11.
    Y. Oyama:Rikwagaku-Kenkyo-Jo-Iho Bull.,1935, vol. 14, pp. 570–83.Google Scholar
  12. 12.
    E.W. Davis:Trans. AIME, 1919, vol. 61, pp. 250–96.Google Scholar
  13. 13.
    K. W. Carley-Macauly and M.B. Donald:Chem. Eng. Sci., 1964, vol. 19, pp. 191–99.CrossRefGoogle Scholar
  14. 14.
    J. J. Ronco and M. de Santiago: Universidad Nacional de La Plata, Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas de la Provincia de Buen Aires (LEMIT), La Plata, RepÚblica Argentina, unpublished research, 1959.Google Scholar
  15. 15.
    H. E. Rose and R. M. E. Sullivan:A Treatise on the Internal Mechanics of Ball, Tube and Rod Mills, Constable and Company Ltd., London, 1957, pp. 35–68and 201-20.Google Scholar
  16. 16.
    H.E. Rose:Trans. Inst. Chem. Engrs., 1959, vol. 37, pp. 47–64.Google Scholar
  17. 17.
    Wire Sieves Specification-E-11, 1970 (Reapproved 1977), 1980 Annual Book of ASTM Standards-Part 13, ASTM, Philadelphia, PA.Google Scholar
  18. 18.
    ASTM Committee E-29,Manual on Test Sieving Methods, ASTM Special Technical Publ. 447A (04-447010-23), ASTM, Philadelphia, PA, 1972.Google Scholar
  19. 19.
    R. R. Irani and C. F. Callis:Particle Size: Measurement, Interpretation and Application, Wiley, NY, 1963, pp. 34–57.Google Scholar
  20. 20.
    T. Allen:Particle Size Measurement, 2nd ed., Chapman and Hall Ltd., London, 1975, pp. 16–43.Google Scholar
  21. 21.
    G. Herdan:Small Particle Statistics, 2nd ed., Academic Press Inc., Toronto, 1960, pp. 1–105.Google Scholar
  22. 22.
    Glossary of Terms Relating to Powders, British Standard 2955, 1958, Amendment PD 5673, November 1965, SBN: 580 02668X.Google Scholar
  23. 23.
    H. Hausner:Handbook of Powder Metallurgy, Chemical Publ. Co. Inc., New York, NY, 1973, pp. 44–48.Google Scholar
  24. 24.
    J. Eastwood, E. J. P. Matzen, M.J. Young, and N. Epstein:British Chem. Eng., 1969, vol. 14, pp. 1542–45.Google Scholar
  25. 25.
    R. L. Brown and J.C. Richards:Principles of Powder Mechanics, Pergamon Press, Toronto, 1970, pp. 1–115.Google Scholar
  26. 26.
    J. K. Brimacombe and A. P. Watkinson:Metall. Trans. B, 1978, vol. 9B, pp. 201–08.Google Scholar
  27. 27.
    F. Von Conrad, E. Cremer, and Th. Kraus:Radex-Rundschau, 1951, vol. 6, pp. 227–33.Google Scholar
  28. 28.
    J. C. Richards, editor:The Storage and Recovery of Paniculate Solids, The Institution of Chemical Engineers, London, 1966, pp. 1–5, 39–56, and 91–94.Google Scholar
  29. 29.
    H. B. Sutherland and D. F. Neale:Acta Technica Academiae Scientiarum Hungaricae, 1968, vol. 63, pp. 297–313.Google Scholar
  30. 30.
    H. E. Rose and G. D. Blunt:Proc. Instu. Mech. Engrs., 1956, vol. 170, pp. 793–800.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1983

Authors and Affiliations

  • H. Henein
    • 1
  • J. K. Brimacombe
    • 2
  • A. P. Watkinson
    • 3
  1. 1.Department of Metallurgical Engineering and Materials ScienceCarnegie-Mellon UniversityPittsburgh
  2. 2.Department of Metallurgical EngineeringThe University of British ColumbiaVancouverCanada
  3. 3.Department of Chemical EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations