Skip to main content
Log in

Determination of specific oxygen uptake rates in human hematopoietic cultures and implications for bioreactor design

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Oxygen plays an important role in the cultivation of primary cellsex vivo. In this study, we used hermetically sealed tissue culture well inserts equipped with oxygen electrodes to measure the oxygen utilization of cultured human bone marrow mononuclear cells (BM MNCs). The oxygen uptake rate (OUR) of BM MNCs was determined during a 14-day culture in which both adherent and nonadherent cells were present. Early in the culture, the cells exhibited very low OURs. The specific OURs (uptake rate per cell) were at approximately 0.005 μmol/106 cells/hr shortly after the initiation of culture. The OUR then increased as the cultures developed. After about 8 to 10 days of cultivation the specific OURs had increased to 0.038±0.006 and 0.025±0.005 μmol/106 cells/hr for adherent and nonadherent cells, respectively, after which no further increase was observed. Based on these oxygen uptake rate data, a mathematical model of oxygen diffusion was formulated and use to investigate issues associated with hematopoietic bioreactor design, including initial cell density, medium depth, reactor configuration, and oxygen partial pressure.In situ OUR measurements confirmed predicted oxygen limitations based on the mathematical model and the experimentally determined OURs. High-density hematopoietic cultures present design challenges in terms of sufficient and uniform delivery of oxygen to an active hematopoietic culture. These challenges can be met by using parallelplate bioreactors with thin liquid layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battino, R., T. R. Rettich, and T. Tominaga. The solubility of oxygen and ozone in liquids.J. Phys. Chem. Ref. Data 12:163–178, 1983.

    Article  CAS  Google Scholar 

  2. Bird, R. B., W. E. Stewart, and E. N. Lightfoot.Transport Phenomena New York: John Wiley and Sons, 1960.

    Google Scholar 

  3. Broxmeyer, H. E., S. Cooper, L. Lu, M. E. Miller, C. D. Langefeld, and P. Ralph. Enhanced stimulation of human bone marrow macrophage colony formation in vitro by recombinant human macrophage eolony-stimulating factor in agarose medium and at low oxygen tension.Blood 76:323–329, 1990.

    PubMed  CAS  Google Scholar 

  4. Cipolleschi, M. G., P. D. Sbarba, and M. Olivotto. The role of hypoxia in the maintenance of hematopoietic stem cells.Blood 82:2031–2037, 1993.

    PubMed  CAS  Google Scholar 

  5. Edgington, S. M.. New horizons for stem- cell bioreactors.BioTechnology 10:1099–1106, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Gesinski, R. M., J. H. Morrison, and J. R. Toepfer. Measurement of oxygen consumption of rat bone marrow cells by a polarographic method.J. Appl. Physiol. 24:751–754, 1968.

    PubMed  CAS  Google Scholar 

  7. Gerlach, J., K. Klöppel, P. Stoll, J. Vienken, and C. Müller. Gas supply across membrane in bioreactors for hepatocyte culture.Artif. Organs 14:328–333, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Goldstick, T. K. Diffusion of Oxygen in Protein Solution. Berkeley: University of California, Ph. D. Thesis, 1966.

    Google Scholar 

  9. Koller, M. R., J. G. Bender, E. T. Papoutsakis, and W. M. Miller. Effects of synergistic cytokine combinations, low oxygen and irradiated stroma on the expansion of human cord blood progenitors.Blood 80:403–411, 1992.

    PubMed  CAS  Google Scholar 

  10. Koller, M. R., S. G. Emerson, and B. O. Palsson. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures.Blood 82:378–384, 1993.

    PubMed  CAS  Google Scholar 

  11. Koller, M. R., and B. O. Palsson. Tissue engineering: reconstitution of human hematopoiesis ex vivo.Biotechnol. Bioeng. 42:909–930, 1993.

    Article  CAS  PubMed  Google Scholar 

  12. Lambertson, C. The atmosphere and gas exchanges with the lungs and blood. InMedical Physiology, (thirteenth edition), vol. 2, edited by V. Mountcastle. St. Louis, MO: C. V. Mosby Company, 1974, pp. 1372–1374.

    Google Scholar 

  13. Lightfoot, E. N.Transport Phenomena and Living Systems: Biomedical Aspects of Momentum and Mass Transport. New York: John Wiley and Sons, 1974, p. 211.

    Google Scholar 

  14. Longmuir, I. S.. Respiration rate of rat-liver cells at low oxygen concentrations.Biochem. J. 65:378–382, 1957.

    PubMed  CAS  Google Scholar 

  15. Maeda, H., T. Hotta, and H. Yamada. Enhanced colony formation of human hematopoietic stem cells in reduced oxygen tension.Exp. Hematol. 14:930–934.

  16. Martiat, P., A. Ferrant, M. Cogneau, A. Bol, J. Rodhain, J. L. Michaux, and G. Sokal. Assessment of bone marrow blood flow using positron emission tomography: No relationship with bone celluarity.Br. J. Haematol. 66:307–310, 1987.

    PubMed  CAS  Google Scholar 

  17. McLimans, W. F., L. E. Blumenson, and K. V. Tunnah. Kinetics of gas diffusion in mammalian cell culture, systems. II. Theory.Biotechnol. Bioeng. 10:741–763, 1968.

    Article  CAS  Google Scholar 

  18. Miller, W. M., and H. W. Blanch. Regulation of, animal cell metabolism in bioreactors. In:Animal Cell Bioreactors, edited by C. S. Ho and D. I. C. Wang. Stoneham, MA: Butterworth-Heinemann, 1991, p. 127.

    Google Scholar 

  19. Olander, C. P.. Respiration and erythropoiesis of bone marrow of normal and hypoxically stimulated rats.Am. Physiol. 222:45–48, 1972.

    CAS  Google Scholar 

  20. Ozturk, S. Kinetic Characterization of Hybridoma Growth, Metabolism, and Monoclona Antibody Production Rates. Ann Arbor: University of Michigan, Ph.D. Thesis, 1990.

    Google Scholar 

  21. Palsson, B. O., S.-H. Paek, R. M. Schwartz, M. Palsson, G.-M. Lee, S. Silver, and S. G. Emerson. Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system.BioTechnology 11:368–372, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Rice, C. W., and W. P. Hempfling. Oxygen-limited continuous culture and respiratory energy conservation inEscherichia coli.J. Bacteriol. 134:115–124, 1978.

    PubMed  CAS  Google Scholar 

  23. Rotem, A., B. D. Foy, M. Toner, R. G. Tompkins, and M. L. Yarmush. A device to measure the oxygen uptake rate of attached cells: Importance in bioartificial organ design.Cell Transplant. 3:1–13, 1994.

    Google Scholar 

  24. Rotem, A., M. Toner, R. G. Tompkins, and M. L. Yarmush. Oxyten uptake in cultured rat hepatocytes.Biotechnol. Bioeng. 40:1286–1291, 1992.

    Article  CAS  PubMed  Google Scholar 

  25. Rotem, A., M. Toner, S. Bhatia, B. D. Foy, R. G. Tompkins, and M. L. Yarmush. Oxygen is a factor determining in vitro tissue assembly: Effects on attachment and spreading of hepatocytes.Biotechnol. Bioeng. 43:654–660, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Yarmush, M. L., M. Toner, J. C. Y. Dunn, A. Rotem, A. Hubel, and R. G. Tompkins. Hepatic tissue engineering: Development of critical technologies.Ann. N.Y. Acad. Sci. 665:238–252, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, CA., Palsson, B.O. Determination of specific oxygen uptake rates in human hematopoietic cultures and implications for bioreactor design. Ann Biomed Eng 24, 373–381 (1996). https://doi.org/10.1007/BF02660886

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660886

Keywords

Navigation