Skip to main content
Log in

Evolution of textures in zirconium alloys deformed uniaxially at elevated temperatures

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Texture evolution inα-Zr due to uniaxial deformation at 923 to 1123 K was investigated in crystal-bar Zr and Zr-2.5Nb. The temperature range selected corresponds to the two-phase (α +β) field in the Zr-2.5Nb alloy. It was found that uniaxial compression causes a progressive rotation of the (0002) plane normals away from the compression direction and away from the compression plane. In the crystal-bar Zr, the compression texture consists of a [0001] fiber tilted 30 deg from the compression axis. By contrast, in Zr-2.5Nb, a [0001] fiber with an angular spread of 30 deg is obtained. The effect of theβ phase present in Zr-2.5Nb at the temperatures investigated was evaluated by testing a Zr-20Nb alloy in compression. The β-phase texture consisted of a weak 〈111〉-〈00l〉 double fiber. Comparison of this texture and the textures observed in Zr-2.5Nb indicates that theβα transformation takes place by the growth of pre-existing a grains and not according to the Burgers mechanism. This transformation has, therefore, no direct effect on the α-phase texture after cooling to room temperature from the (α +β) field. Uniaxial elongation by swaging of Zr-2.5Nb produces a dual\(\left\langle {10\bar 10} \right\rangle - \left[ {0001} \right]\) fiber. Similar results are obtained in hot extruded rods. Modeling of the development of textures in the α phase was performed using linear programming and employing relaxed constraint (RC) models (“curling” for tension and ”pancake” for compression) implemented for hexagonal close-packed (hcp) grains. It is assumed that prismatic, basal, and 〈c +a〉 pyramidal slip were the active deformation modes at high temperatures. It is shown that these models reduce the activity of the pyramidal slip systems to realistic values, in contrast to the full constraint (FC) approach, where most of the deformation is accommodated by 〈c +a〉 slip. Microstructural evidence is presented regarding the occurrence of ”curling” during uniaxial elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Tenckhoff:Deformation, Mechanisms, Texture and Anistropy in Zirconium and Zircaloy, ASTM STP 966, ASTM, Philadelphia, PA, 1988.

    Google Scholar 

  2. R.G. Ballinger:The Anisotropic Mechanical Behaviour of Zircaloy-2, Garland Publishing, New York, NY, 1979.

    Google Scholar 

  3. J.A. Jensen and W.A. Backofen:Can. Metall. Q., 1972, vol. 11, (1), pp. 39–51.

    CAS  Google Scholar 

  4. O.T. Woo, G.J.C. Carpenter, and S.R. MacEwen:J. Nucl. Mater., 1979, vol. 87, pp. 70–80.

    Article  CAS  Google Scholar 

  5. A. Akhtar:J. Nucl. Mater., 1973, vol. 47, pp. 79–86.

    Article  CAS  Google Scholar 

  6. S.R. MacEwen, N. Christodoulou, C. Tomé, J. Jackman, T.M. Holden, J. Faber, and R.L. Hitterman:Conf. Proc, 8th Int. Conf. on Textures of Materials ICOTOM-8, J.S. Kallend and G. Gottstein, eds., Warrendale, PA, 1987, pp. 825-36.

  7. K. Källström:Can. Metall. Q., 1972, vol. 11 (1), pp. 185–98.

    Google Scholar 

  8. D.O. Hobson:Trans. TMS-AIME, 1968, vol. 242, pp. 1105–10.

    Google Scholar 

  9. E. Tenckhoff:Metall. Trans. A, 1978, vol. 9A, pp. 1401–12.

    CAS  Google Scholar 

  10. M.L. Picklesimer:Electrochem. Technol., 1966, vol. 4 (7/8), pp. 289–99.

    CAS  Google Scholar 

  11. P.L. Rittenhouse and M.L. Picklesimer:Electrochem. Technol., 1966, vol. 4 (7/8), pp. 322–29.

    CAS  Google Scholar 

  12. W.T. Roberts:J. Less-Common Met., 1962, vol. 4, pp. 345–61.

    Article  CAS  Google Scholar 

  13. A. Akhtar:Metall. Trans. A, 1975, vol. 6A, pp. 1217–22.

    CAS  Google Scholar 

  14. A. Akhtar and A. Teghtsoonian:Acta Metall., 1971, vol. 19, pp. 655–63.

    Article  CAS  Google Scholar 

  15. A. Akhtar:Acta Metall., 1973, vol. 21, pp. 1–11.

    Article  Google Scholar 

  16. R.A. Holt and S.A. Aldridge:J. Nucl. Mater., 1985, vol. 135, pp. 246–49.

    Article  CAS  Google Scholar 

  17. B.A. Cheadle, S.A. Aldridge, and C.E. Ells:Can Metall. Q., 1972, vol. 11 (1), pp. 121–27.

    CAS  Google Scholar 

  18. B.A. Cheadle, C.E. Ells, and W. Evans:J. Nucl. Mater., 1967, vol. 23, pp. 199–208.

    Article  CAS  Google Scholar 

  19. A. Salinas Rodriguez: Ph.D. Thesis, McGill University, Montreal, PQ, Canada, 1988.

    Google Scholar 

  20. J.E. Winegar:Measurement of Crystallographic Texture at CRNL, AECL-5626, AECL Research, Chalk River Laboratories, Canada, 1977.

    Google Scholar 

  21. W.G. Burgers:Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  22. B.A. Cheadle and C.E. Ells:Electrochem. Technol., 1966, vol. 4 (7/8), pp. 329–41.

    CAS  Google Scholar 

  23. G.I. Taylor:J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  24. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  25. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 1298–1307.

    CAS  Google Scholar 

  26. M. Renouard and M. Wintenberger:C.R. Acad. Sci., Paris, 1981, vol. 292, Series II, pp. 385–88.

    Google Scholar 

  27. M. Renouard and M. Wintenberger:C.R. Acad. Sci., Paris, 1976, vol. 283, Series B, pp. 237–40.

    CAS  Google Scholar 

  28. H. Honneff and H. Mecking:Conf. Proc, 5th Int. Conf. on Textures of Materials ICOTOM-5, G. Gottstein and K. Lücke, eds., Springer-Verlag, Germany, 1978, vol. 1, pp. 265–75.

    Google Scholar 

  29. P. Van Houtte:Mater. Sci. Eng., 1982, vol. 55, pp. 69–77.

    Article  Google Scholar 

  30. P.Van Houtte:Conf. Proc, 6th Int. Conf. on Textures of Materials ICOTOM-6, S. Nagashima, ed., ISIJ, Tokyo, 1985, pp. 375–80.

    Google Scholar 

  31. Ph. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, and J.J. Jonas:Acta Metall., 1987, vol. 35, No. 2, pp. 439–51.

    Article  CAS  Google Scholar 

  32. G.G. Bach: Numerical Analysis: Lecture Notes, McGill University, Montreal, PQ, Canada, 1984.

    Google Scholar 

  33. P. Van Houtte:Acta Metall., 1978, vol. 26, pp. 591–604.

    Article  Google Scholar 

  34. J.L. Raphanel and P. Van Houtte:Acta Metall., 1985, vol. 33 (8), pp. 1481–88.

    Article  CAS  Google Scholar 

  35. R. Fortunier: Thèse, Ecole Nationale Supérieur des Mines de Sainte- Etienne, Saint-Étienne, France, 1988.

    Google Scholar 

  36. C. Tome and U.F. Kocks:Acta Metall., 1985, vol. 33 (4), pp. 603–21.

    Article  CAS  Google Scholar 

  37. T. Leffers, R.J. Asaro, J.H. Driver, U.K. Kocks, H. Mecking, C. Tome, and P. Van Houtte:Conf. Proc, 8th Int. Conf. on Textures of Materials ICOTOM-8, J.S. Kallend and G. Gottstein, eds., Warrendale, PA, 1987, pp. 265-72.

  38. J.F. Peck and D.A. Thomas:Trans. TMS-AIME, 1961, vol. 221, pp. 1240–47.

    Google Scholar 

  39. W.F. Hosford:Trans. TMS-AIME, 1964, vol. 230, pp. 12–15.

    CAS  Google Scholar 

  40. S. Leber:Trans. ASM, 1961, vol. 53, pp. 697–713. $

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student with the Department of Metallurgical Engineering, McGill University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, A.S., Jonas, J.J. Evolution of textures in zirconium alloys deformed uniaxially at elevated temperatures. Metall Trans A 23, 271–293 (1992). https://doi.org/10.1007/BF02660871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660871

Keywords

Navigation