Skip to main content
Log in

Emission infrared spectroscopy for in situ analysis of the OMVPE growth surface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fourier transform infrared (FTIR) spectroscopy has proven to be an effective tool for the analysis of OMVPE growth. Both transmission and attenuated total reflection (ATR) provide information including identification and the relative concentrations of both reactants and products. Until recently we have only been able to apply transmission to the gas phase and ATR to in situ surface analysis. OMVPE is a heterogeneous process and ATR using a GaAs element is limited to temperatures where the sample is transparent,i.e. <400° C. Surface reactions are important to the overall process. We have recently developed a technique which effectively monitors the surface species in situ. All materials emit infrared radiation proportional toT 4. Under OMVPE growth conditions (400-70° C) this emission is considerable, particularly from the surface of the emitting sample. Emission spectra correspond directly to that of absorption spectra and can easily be collected with an FTIR spectrometer. The spectra yield the same information as transmission FTIR primarily for surface species. We have used this system to monitor the adsorption and reaction of TMGa and ammonia. We have identified adsorbed ammonia and TMGa on the surface and have been able to see how these molecules change as they decompose on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Larsen, N. I. Buchan, S. H. Li and G. B. Stringfellow, J. Cryst. Growth94, 663 (1989).

    Article  CAS  Google Scholar 

  2. S. H. Li, C. A. Larsen, N. I. Buchan and G. B. Stringfellow, J. Electron. Mater.18, 457 (1989).

    CAS  Google Scholar 

  3. K. A. Jones, Prog. Cryst. Growth and Charact.13, 291 (1986).

    Article  CAS  Google Scholar 

  4. C. A. Larsen and G. B. Stringfellow, J. Cryst. Growth75, 247 (1986).

    Article  CAS  Google Scholar 

  5. D. Mazzarese, A. Tripathi, W. C. Conner, K. A. Jones, L. Calderon and D. W. Eckart, J. Electron. Mater.18, 369 (1989).

    CAS  Google Scholar 

  6. K. F. Jensen, J. Cryst. Growth98, 148 (1989).

    Article  CAS  Google Scholar 

  7. D. E. Aspnes, IEEE J. Quantum Electron.25, 1056 (1989).

    Article  CAS  Google Scholar 

  8. V. M. Robbins, E. C. Jones, J. N. Miller, D. E. Mars and A. S. Wakita, Fifth Biennial Workshop on Organometallic Vapor Phase Epitaxy (1991).

  9. S. G. Hummel, N. F. Frateschi and P. D. Dapkus, Fifth Biennial Workshop on Organometallic Vapor Phase Epitaxy (1991).

  10. A. Tripathi, D. Mazzarese, W. C. Conner and K. A. Jones, J. Electron. Mater.18, 45 (1989).

    CAS  Google Scholar 

  11. A. Annapragada, K. F. Jensen, Fifth Biennial Workshop on Organometallic Vapor Phase Epitaxy (1991).

  12. K. A. Jones Introducton to Optical Electronics, Harper and Row publishers, New York, 1987.

    Google Scholar 

  13. T. S. Moss. Optical Properties of Semiconductors, Butter- worths, London, 1961.

    Google Scholar 

  14. M. A. Tishner and S. M. Bedair, J. Cryst. Growth,77, 89 (1986).

    Article  Google Scholar 

  15. Y. Sakuma, K. Kodama and M. Ozeki, Appl. Phys. Lett.56, 827 (1990).

    Article  CAS  Google Scholar 

  16. R. P. Eischens and W. A. Pliskin, Adv. Catalysis10, 1 (1958).

    Article  CAS  Google Scholar 

  17. P. C. van Woerkom, J. Molecular Struct.79, 31 (1982).

    Article  Google Scholar 

  18. J. B. Bates, Infrared Emission Spectroscopy, J. R. Ferraro and L. J. Basile eds., Fourier Transform Infrared Spetros- copy. Academic Press, Inc. New York, 1978.

    Google Scholar 

  19. K. Nakamoto, Infrared Spectra of Inorganic Compounds, Second Ed., John Wiley and Sons, New York, 1970.

    Google Scholar 

  20. J. R. Durig, C. B. Bradley and J. D. Odom, Inorganic Chem- istry, Vol. 21, No. 4, 1466 (1982).

    Article  CAS  Google Scholar 

  21. L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, New York, 1966.

    Google Scholar 

  22. B. A. Morrow and R. A. McFarlane, J. Phys. Chem.90, 1392 (1986).

    Article  Google Scholar 

  23. M. A. Henderson, P. L. Randloff, J. M. White and C. A. Mims, J. Phys. Chem.92, 4111 (1988).

    Article  Google Scholar 

  24. P. R. Griffiths, Appl. Spectros.26, 73 (1972).

    Article  CAS  Google Scholar 

  25. J. Mink, Mikrochimica Acta, III, 63 (1987).

    Article  Google Scholar 

  26. S. V. Compton, D. A. C. Compton and R. G. Messerschmidt, Spectroscopy Vol. 6, 35 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzarese, D., Jones, K.A. & Conner, W.C. Emission infrared spectroscopy for in situ analysis of the OMVPE growth surface. J. Electron. Mater. 21, 329–333 (1992). https://doi.org/10.1007/BF02660462

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660462

Key words

Navigation